Preview

Человек и его здоровье

Расширенный поиск

Роль трансформирующего фактора роста бета в опухолевом процессе

https://doi.org/10.21626/vestnik/2021-3/07

Аннотация

Изучение и применение представителей семейства трансформирующего ростового фактора бета (TGF-β) в практической медицине остается актуальной задачей в настоящее время. Более подробное изучение свойств и активности белков, относящихся к TGF-β, открывает новые возможности в лечении и диагностике заболеваний, связанных со скелетной мускулатурой, женской репродуктивной системой, онкологией и сердечно-сосудистой системой, а также в разработке лекарственных средств на их основе. В данной работе рассмотрена роль TGF-β в развитии опухолей и потенциал этого белка в качестве терапевтической мишени, а также сигнальный путь, многообразные белки-маркеры и различные типы рецепторов, включенные в данный процесс. При развитии опухоли TGF-β использует два пути: классический SMAD-зависимый путь и не-SMAD-зависимый путь. На ранних стадиях онкогенеза TGF-β действует как опухолевый супрессор, вызывая цитостатический эффект и апоптоз в нормальных и предзлокачественных клетках. Однако после развития опухоли TGF-β функционирует как промотор опухоли, запускающий переход эпителия в мезенхиму, что приводит к повышенной инвазивности и развитию метастазов. Исследована роль TGF-β при онкогенезе в разных системах органов, в том числе при раке молочных желез, толстой кишки, желудка, гепатоцеллюлярной карциноме, раке щитовидной железе и др. Конкретно TGF-β1 вызывает широкий спектр разных физиологических реакций, регулирует развитие, дифференцировку, канцерогенез и опухолевую прогрессию эпителиальных клеток, оказывает множественное влияние на весь процесс кроветворения. Представлены направления для создания препаратов для лечения опухолей, нацеленные на TGF-β.

Об авторах

Владимир Григорьевич Кукес
Научный центр экспертизы средств медицинского применения; Первый Московский государственный медицинский университет имени И.М. Сеченова
Россия

д-р мед. наук, профессор, академик РАН, руководитель научного направления «Фармакология», НЦЭСМП; профессор кафедры клинической фармакологии и пропедевтики внутренних болезней, Сеченовский Университет



Алексей Борисович Прокофьев
Научный центр экспертизы средств медицинского применения (НЦЭСМП); Первый Московский государственный медицинский университет имени И.М. Сеченова
Россия

д-р мед. наук, директор Центра клинической фармакологии, НЦЭСМП; профессор кафедры клинической фармакологии и пропедевтики внутренних болезней, Сеченовский Университет



Ольга Константиновна Парфенова
Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича
Россия

лаборант-исследователь



Татьяна Владимировна Александрова
Научный центр экспертизы средств медицинского применения
Россия

канд. мед. наук, ст. аналитик



Альбина Амырхановна Газданова
Первый Московский государственный медицинский университет имени И.М. Сеченова
Россия

канд. мед. наук, доцент кафедры клинической фармакологии и пропедевтики внутренних болезней



Валентина Владимировна Косенко
Научный центр экспертизы средств медицинского применения
Россия

канд. фарм. наук, генеральный директор



Алла Аркадьевна Трапкова
Научный центр экспертизы средств медицинского применения
Россия

канд. биол. наук, зам. генерального директора



Список литературы

1. Al Shareef Z., Kardooni H., Murillo-Garzón V., Domenici G., Stylianakis E., Steel J.H., Rabano M., Gorroño-Etxebarria I. et al. Protective effect of stromal Dickkopf-3 in prostate cancer: opposing roles for TGFBI and ECM-1. Oncogene. 2018;37(39):5305-5324. DOI: 10.1038/s41388-018-0294-0

2. Benson A.B., Venook A.P., Al-Hawary M.M., Cederquist L., Chen Y.J., Ciombor K.K., Cohen S., Cooper H.S. et al. NCCN Guidelines Insights: Colon Cancer, Version 2.2018. J Natl Compr Canc Netw. 2018;16(4):359-369. DOI: 10.6004/jnccn.2018.0021

3. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. DOI: 10.3322/caac.21492

4. Cascione M., Leporatti S., Dituri F., Giannelli G. Transforming Growth Factor-β Promotes Morphomechanical Effects Involved in Epithelial to Mesenchymal Transition in Living Hepatocellular Carcinoma. Int J Mol Sci. 2018;20(1):108. DOI: 10.3390/ijms20010108

5. Chen K., Wei H., Ling S., Yi C. Expression and significance of transforming growth factor-β1 in epithelial ovarian cancer and its extracellular matrix. Oncol Lett. 2014;8(5):2171-2174. DOI: 10.3892/ol.2014.2448

6. Chen Y., Huang S., Wu B., Fang J., Zhu M., Sun L., Zhang L., Zhang Y. et al. Transforming growth factor-β1 promotes breast cancer metastasis by downregulating miR-196a-3p expression. Oncotarget. 2017;8(30):49110-49122. DOI: 10.18632/oncotarget.16308

7. Cheng Y., Guo Y., Zhang Y., You K., Li Z., Geng L. MicroRNA-106b is involved in transforming growth factor β1-induced cell migration by targeting disabled homolog 2 in cervical carcinoma. J Exp Clin Cancer Res. 2016;(35):11. DOI: 10.1186/s13046-016-0290-6

8. Dai X., Fang M., Li S., Yan Y., Zhong Y., Du B. miR-21 is involved in transforming growth factor β1-induced chemoresistance and invasion by targeting PTEN in breast cancer. Oncol Lett. 2017;14(6):6929-6936. DOI: 10.3892/ol.2017.7007

9. Fang F., Huang B., Sun S., Xiao M., Guo J., Yi X., Cai J., Wang Z. miR-27a inhibits cervical adenocarcinoma progression by downregulating the TGF-βRI signaling pathway. Cell Death Dis. 2018;9(3):395. DOI: 10.1038/s41419-018-0431-2

10. Geyh S., Rodríguez-Paredes M., Jäger P., Koch A., Bormann F., Gutekunst J., Zilkens C., Germing U. et al. Transforming growth factor β1-mediated functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia. Haematologica. 2018;103(9):1462-1471. DOI: 10.3324/haematol.2017.186734

11. Hata A., Chen Y.G. TGF-β Signaling from Receptors to Smads. Cold Spring Harb Perspect Biol. 2016;8(9):a022061. DOI: 10.1101/cshperspect.a022061

12. He B., Xu T., Pan B., Pan Y., Wang X., Dong J., Sun H., Xu X. et al. Polymorphisms of TGFBR1, TLR4 are associated with prognosis of gastric cancer in a Chinese population. Cancer Cell Int. 2018;(18):191. DOI: 10.1186/s12935-018-0682-0

13. Huang F., Wan J., Hu W., Hao S. Enhancement of Anti-Leukemia Immunity by Leukemia-Derived Exosomes Via Downregulation of TGF-β1 Expression. Cell Physiol Biochem. 2017;44(1):240-254. DOI: 10.1159/000484677

14. Ji M., Shi H., Xie Y., Zhao Z., Li S., Chang C., Cheng X., Li Y. Ubiquitin specific protease 22 promotes cell proliferation and tumor growth of epithelial ovarian cancer through synergy with transforming growth factor β1. Oncol Rep. 2015;33(1):133-140. DOI: 10.3892/or.2014.3580

15. Jiang F., Mu J., Wang X., Ye X., Si L., Ning S., Li Z., Li Y. The repressive effect of miR-148a on TGF beta-SMADs signal pathway is involved in the glabridin-induced inhibition of the cancer stem cells-like properties in hepatocellular carcinoma cells. PLoS One. 2014;9(5):e96698. DOI: 10.1371/journal.pone.0096698

16. Jiang F., Yu Q., Chu Y., Zhu X., Lu W., Liu Q., Wang Q. MicroRNA-98-5p inhibits proliferation and metastasis in non-small cell lung cancer by targeting TGFBR1. Int J Oncol. 2019;54(1):128-138. DOI: 10.3892/ijo.2018.4610

17. Jiang W., Xu Z., Yu L., Che J., Zhang J., Yang J. MicroRNA-144-3p suppressed TGF-β1-induced lung cancer cell invasion and adhesion by regulating the Src-Akt-Erk pathway. Cell Biol Int. 2019. DOI: 10.1002/cbin.11158

18. Li C., Zhou D., Hong H., Yang S., Zhang L., Li S., Hu P., Ren H. et al. TGFβ1- miR-140-5p axis mediated up-regulation of Flap Endonuclease 1 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Aging (Albany NY). 2019;11(15):5593-5612. DOI: 10.18632/aging.102140

19. Li L., Yan S., Zhang H., Zhang M., Huang G., Chen M. Interaction of hnRNP K with MAP 1B-LC1 promotes TGF-β1-mediated epithelial to mesenchymal transition in lung cancer cells. BMC Cancer. 2019;19(1):894. DOI: 10.1186/s12885-019-6119-x

20. Li M.Y., Liu J.Q., Chen D.P., Li Z.Y., Qi B., Yin W.J., He L. p68 prompts the epithelial-mesenchymal transition in cervical cancer cells by transcriptionally activating the TGF-β1 signaling pathway. Oncol Lett. 2018;15(2):2111-2116. DOI: 10.3892/ol.2017.7552

21. Li T., Zhao N., Lu J., Zhu Q., Liu X., Hao F., Jiao X. Epigallocatechin gallate (EGCG) suppresses epithelial-Mesenchymal transition (EMT) and invasion in anaplastic thyroid carcinoma cells through blocking of TGF-β1/Smad signaling pathways. Bioengineered. 2019;10(1):282-291. DOI: 10.1080/21655979.2019.1632669

22. Li Y., Chen D., Hao F.Y., Zhang KJ. Targeting TGF-β1 and AKT signal on growth and metastasis of anaplastic thyroid cancer cell in vivo. Eur Rev Med Pharmacol Sci. 2020;24(13):7208. DOI: 10.26355/eurrev_202007_21859

23. Luyimbazi D., Nelson R.A., Choi A.H., Li L., Chao J., Sun V., Hamner J.B., Kim J. Estimates of conditional survival in gastric cancer reveal a reduction of racial disparities with long-term follow-up. J Gastrointest Surg. 2015;19(2):251-257. DOI: 10.1007/s11605-014-2688-9

24. Ma W., Qin Y., Chapuy B., Lu C. LRRC33 is a novel binding and potential regulating protein of TGF-β1 function in human acute myeloid leukemia cells. PLoS One. 2019;14(10):e0213482. DOI: 10.1371/journal.pone.0213482.

25. Maishi N., Hida K. Tumor endothelial cells accelerate tumor metastasis. Cancer Sci. 2017;108(10):1921-1926. DOI: 10.1111/cas.13336

26. Meng X.M., Nikolic-Paterson D.J., Lan H.Y. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12(6):325-338. DOI: 10.1038/nrneph.2016.48

27. Nursal A.F., Pehlivan M., Sahin H.H., Pehlivan S. The Associations of IL-6, IFN-γ, TNF-α, IL-10, and TGF-β1 Functional Variants with Acute Myeloid Leukemia in Turkish Patients. Genet Test Mol Biomarkers. 2016;20(9):544-551. DOI: 10.1089/gtmb.2016.0036

28. Papageorgis P. TGFβ Signaling in Tumor Initiation, Epithelial-to-Mesenchymal Transition, and Metastasis. J Oncol. 2015;(2015):587193. DOI: 10.1155/2015/587193

29. Parichatikanond W., Luangmonkong T., Mangmool S., Kurose H. Therapeutic Targets for the Treatment of Cardiac Fibrosis and Cancer: Focusing on TGF-β Signaling. Front Cardiovasc Med. 2020;(7):34. DOI: 10.3389/fcvm.2020.00034

30. Peng L., Yuan X.Q., Zhang C.Y., Ye F., Zhou H.F., Li W.L., Liu Z.Y., Zhang Y.Q. et al. High TGF-β1 expression predicts poor disease prognosis in hepatocellular carcinoma patients. Oncotarget. 2017;8(21):34387-34397. DOI: 10.18632/oncotarget.16166

31. Qu Z., Feng J., Pan H., Jiang Y., Duan Y., Fa Z. Exosomes derived from HCC cells with different invasion characteristics mediated EMT through TGF-β/Smad signaling pathway. Onco Targets Ther. 2019;(12):6897-6905. DOI: 10.2147/OTT.S209413

32. Rouce R.H., Shaim H., Sekine T., Weber G., Ballard B., Ku S., Barese C., Murali V. et al. The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia. 2016;30(4):800-811. DOI: 10.1038/leu.2015.327

33. Sabbadini F., Bertolini M., De Matteis S., Mangiameli D., Contarelli S., Pietrobono S., Melisi D. The Multifaceted Role of TGF-β in Gastrointestinal Tumors. Cancers (Basel). 2021;13(16):3960. DOI: 10.3390/cancers13163960

34. Shuang Z.Y., Wu W.C., Xu J., Lin G., Liu Y.C., Lao X.M., Zheng L., Li S. Transforming growth factor-β1-induced epithelial-mesenchymal transition generates ALDH-positive cells with stem cell properties in cholangiocarcinoma. Cancer Lett. 2014;354(2): 320-328. DOI: 10.1016/j.canlet.2014.08.030

35. Sun S.L., Wang X.Y. TGF-β1 promotes proliferation and invasion of hepatocellular carcinoma cell line HepG2 by activating GLI-1 signaling. Eur Rev Med Pharmacol Sci. 2018;22(22):7688-7695. DOI: 10.26355/eurrev_201811_16389

36. Takeuchi Y., Nishikawa H. Roles of regulatory T cells in cancer immunity. Int Immunol. 2016;28(8):401-419. DOI: 10.1093/intimm/dxw025

37. Tang Y.H., He G.L., Huang S.Z., Zhong K.B., Liao H., Cai L., Gao Y., Peng ZW. et al. The long noncoding RNA AK002107 negatively modulates miR-140-5p and targets TGFBR1 to induce epithelial-mesenchymal transition in hepatocellular carcinoma. Mol Oncol. 2019;13(5):1296-1310. DOI: 10.1002/1878-0261.12487

38. Teng Y., Zhao L., Zhang Y., Chen W., Li X. Id-1, a protein repressed by miR-29b, facilitates the TGFβ1-induced epithelial-mesenchymal transition in human ovarian cancer cells. Cell Physiol Biochem. 2014;33(3):717-730. DOI: 10.1159/000358647

39. Tu S., Huang W., Huang C., Luo Z., Yan X. Contextual Regulation of TGF-β Signaling in Liver Cancer. Cells. 2019;8(10):1235. DOI: 10.3390/cells8101235

40. Vander Ark A., Cao J., Li X. TGF-β receptors: In and beyond TGF-β signaling. Cell Signal. 2018;(52): 112-120. DOI: 10.1016/j.cellsig.2018.09.002

41. Wang J., Xiang H., Lu Y., Wu T. Role and clinical significance of TGF-β1 and TGF-βR1 in malignant tumors (Review). Int J Mol Med. 2021;47(4):55. DOI: 10.3892/ijmm.2021.4888

42. Wongnoppavich A., Dukaew N., Choonate S., Chairatvit K. Upregulation of maspin expression in human cervical carcinoma cells by transforming growth factor β1 through the convergence of Smad and non-Smad signaling pathways. Oncol Lett. 2017;13(5):3646-3652. DOI: 10.3892/ol.2017.5939

43. Wrana J.L. Signaling by the TGFβ superfamily. Cold Spring Harb Perspect Biol. 2013;5(10):a011197. DOI: 10.1101/cshperspect.a011197

44. Wu M., Chen X., Lou J., Zhang S., Zhang X., Huang L., Sun R., Huang P. et al. TGF-β1 contributes to CD8+ Treg induction through p38 MAPK signaling in ovarian cancer microenvironment. Oncotarget. 2016;7(28):44534-44544. DOI: 10.18632/oncotarget.10003

45. Wu M.Y., Hill C.S. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell. 2009;16(3):329-343. DOI: 10.1016/j.devcel.2009.02.012

46. Yang L., Yu Y., Xiong Z., Chen H., Tan B., Hu H. Downregulation of SEMA4C Inhibit Epithelial-Mesenchymal Transition (EMT) and the Invasion and Metastasis of Cervical Cancer Cells via Inhibiting Transforming Growth Factor-beta 1 (TGF-β1)-Induced Hela cells p38 Mitogen-Activated Protein Kinase (MAPK) Activation. Med Sci Monit. 2020;(26):e918123. DOI: 10.12659/MSM.918123

47. Yang Y., Ye W.L., Zhang R.N., He X.S., Wang J.R., Liu Y.X., Wang Y., Yang X.M. et al. The Role of TGF-β Signaling Pathways in Cancer and Its Potential as a Therapeutic Target. Evid Based Complement Alternat Med. 2021;(2021):6675208. DOI: 10.1155/2021/6675208

48. Yao S., Tian C., Ding Y., Ye Q., Gao Y., Yang N., Li Q. Down-regulation of Krüppel-like factor-4 by microRNA-135a-5p promotes proliferation and metastasis in hepatocellular carcinoma by transforming growth factor-β1. Oncotarget. 2016;7(27): 42566-42578. DOI: 10.18632/oncotarget.9934

49. Ye Z., Zhao L., Li J., Chen W., Li X. miR-30d Blocked Transforming Growth Factor β1-Induced Epithelial-Mesenchymal Transition by Targeting Snail in Ovarian Cancer Cells. Int J Gynecol Cancer. 2015;25(9):1574-1581. DOI: 10.1097/IGC.0000000000000546

50. Yin Q., Liu S., Dong A., Mi X., Hao F., Zhang K. Targeting Transforming Growth Factor-Beta1 (TGF-β1) Inhibits Tumorigenesis of Anaplastic Thyroid Carcinoma Cells Through ERK1/2-NFκkB-PUMA Signaling. Med Sci Monit. 2016;(22):2267-2277. DOI: 10.12659/msm.898702

51. Zhang C., Chen B., Jiao A., Li F., Sun N., Zhang G., Zhang J. miR-663a inhibits tumor growth and invasion by regulating TGF-β1 in hepatocellular carcinoma. BMC Cancer. 2018;18(1):1179. DOI: 10.1186/s12885-018-5016-z

52. Zhang H.W., Wang E.W., Li L.X., Yi S.H., Li L.C., Xu F.L., Wang D.L., Wu Y.Z. et al. A regulatory loop involving miR-29c and Sp1 elevates the TGF-β1 mediated epithelial-to-mesenchymal transition in lung cancer. Oncotarget. 2016;7(52):85905-85916. DOI: 10.18632/oncotarget.13137

53. Zhang J., Liu W., Shen F., Ma X., Liu X., Tian F., Zeng W., Xi X. et al. The activation of microRNA-520h-associated TGF-β1/c-Myb/Smad7 axis promotes epithelial ovarian cancer progression. Cell Death Dis. 2018;9(9):884. DOI: 10.1038/s41419-018-0946-6

54. Zhang N., Bi X., Zeng Y., Zhu Y., Zhang Z., Liu Y., Wang J., Li X. et al. TGF-β1 promotes the migration and invasion of bladder carcinoma cells by increasing fascin1 expression. Oncol Rep. 2016;36(2):977-983. DOI: 10.3892/or.2016.4889

55. Zhang X., Liu L., Deng X., Li D., Cai H., Ma Y., Jia C., Wu B. et al. MicroRNA 483-3p targets Pard3 to potentiate TGF-β1-induced cell migration, invasion, and epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Oncogene. 2019;38(5):699-715. DOI: 10.1038/s41388-018-0447-1

56. Zhang Y., Alexander P.B., Wang X.F. TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harb Perspect Biol. 2017;9(4):a022145. DOI: 10.1101/cshperspect.a022145

57. Zhang Y., Li B., Li X., Tan H., Cheng D., Shi H. An imaging target TGF-β1 for hepatocellular carcinoma in mice. Hell J Nucl Med. 2017;20(1):76-78. DOI: 10.1967/s002449910510

58. Zhang Y., Shi K., Liu H., Chen W., Luo Y., Wei X., Wu Z. miR-4458 inhibits the epithelial-mesenchymal transition of hepatocellular carcinoma cells by suppressing the TGF-β signaling pathway via targeting TGFBR1. Acta Biochim Biophys Sin (Shanghai). 2020;52(5):554-562. DOI: 10.1093/abbs/gmaa029


Рецензия

Для цитирования:


Кукес В.Г., Прокофьев А.Б., Парфенова О.К., Александрова Т.В., Газданова А.А., Косенко В.В., Трапкова А.А. Роль трансформирующего фактора роста бета в опухолевом процессе. Человек и его здоровье. 2021;24(3):61-69. https://doi.org/10.21626/vestnik/2021-3/07

For citation:


Kukes V.G., Prokofiev A.B., Parfenova O.K., Aleksandrova T.V., Gazdanova A.A., Kosenko V.V., Trapkova A.A. Role of transforming growth factor beta in tumor process. Humans and their health. 2021;24(3):61-69. (In Russ.) https://doi.org/10.21626/vestnik/2021-3/07

Просмотров: 297


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1998-5746 (Print)
ISSN 1998-5754 (Online)