Анализ ретинальной экспрессии генов, участвующих в регуляции ангиогенеза и функций эндотелиального барьера после воздействия лазерного излучения с длиной волны 577 нм в непрерывном режиме на сетчатку
https://doi.org/10.21626/vestnik/2021-2/05
Аннотация
Цель исследования - изучение ретинальной экспрессии генов, участвующих в регуляции ангиогенеза и функций эндотелиального барьера после воздействия лазерного излучения с длиной волны 577 нм в непрерывном режиме на сетчатку в экспериментальных условиях после интравитреального введения VEGF165 (Vascular endothelial growth factor).
Материалы и методы. Исследование проводилось на 4-5-недельных самцах мышей линии C57BL/6J. Было сформировано 4 группы по 5 мышей в каждой группе, один глаз животных был экспериментальным, второй глаз оставался неповрежденным. Животным первой группы проводили интравитреальную инъекцию фосфатно-солевого буфера (PBS); животным второй, третьей и четвертой групп проводили интравитреальную инъекцию 50 нг/мл рекомбинантного VEGF165; в третьей и четвертой группах через один день после интравитреального введения VEGF165 производилось лазерное воздействие с длиной волны 577 нм на сетчатку в микроимпульсном и непрерывном режимах соответственно. Образцы тканей у животных из первой и второй групп были взяты через 2 дня после введения PBS и VEGF165, у животных из третьей и четвертой групп через один день после лазерного воздействия на сетчатку.
Результаты. Изучена ретинальная экспрессия генов, участвующих в регуляции ангиогенеза и функций эндотелиального барьера в результате воздействия на сетчатку лазерного излучения 577 нм в непрерывном режиме после интравитреального введения VEGF165. Идентифицированы гены с достоверным изменением уровней экспрессии.
Заключение. Понимание механизмов модуляции экспрессии генов сетчатки может помочь выявить ключевые регуляторные факторы, обеспечивающие терапевтический эффект лазерного излучения в непрерывном и микроимпульсном режимах, а также послужить основой для реализации будущей терапевтической тактики лечения заболеваний сетчатки.
Об авторах
Наталья Александровна ГавриловаРоссия
д-р мед. наук, профессор, зав. кафедрой глазных болезней
Константин Георгиевич Гуревич
Россия
д-р мед. наук, профессор, зав. кафедрой ЮНЕСКО «Здоровый образ жизни - залог успешного развития»
Ольга Юрьевна Комова
Россия
ассистент кафедры глазных болезней
Александра Витальевна Зиновьева
Россия
старший лаборант кафедры глазных болезней
Список литературы
1. Кузник Б.И., Хавинсон В.Х., Тарновская С.И., Линькова Н.С., Козина Л.С., Дьяконов М.М. Адгезивная молекула JAM-A и молекулярные механизмы возрастной патологии: обзор литературы и собственных данных. Успехи геронтологии. 2015;28(4):656-668
2. Binz N., Graham C.E., Simpson K., Lai Y.K., Shen W.Y., Lai C.M., Speed T.P., Rakoczy P.E. Long-term effect of therapeutic laser photocoagulation on gene expression in the eye. FASEB J. 2006;20(2):383-385. DOI: 10.1096/fj.05-3890fje
3. Boeckel J.N., Guarani V., Koyanagi M., Roexe T., Lengeling A., Schermuly R.T., Gellert P., Braun T. et al. Jumonji domain-containing protein 6 (Jmjd6) is required for angiogenic sprouting and regulates splicing of VEGF-receptor 1. Proc Natl Acad Sci U S A. 2011;108(8):3276-3281. DOI: 10.1073/pnas.1008098108
4. Boström K., Zebboudj A.F., Yao Y., Lin T.S., Tor-res A. Matrix GLA protein stimulates VEGF expression through increased transforming growth factor-beta1 activity in endothelial cells. J Biol Chem. 2004;279(51):52904-52913. DOI: 10.1074/jbc.M406868200
5. Cao R., Bråkenhielm E., Pawliuk R., Wariaro D., Post M.J., Wahlberg E., Leboulch P., Cao Y. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med. 2003;9(5):604-613. DOI: 10.1038/nm848
6. Contois L.W., Nugent D.P., Caron J.M., Cretu A., Tweedie E., Akalu A., Liebes L., Friesel R. et al. Insulin-like growth factor binding protein-4 differentially inhibits growth factor-induced angiogenesis. J Biol Chem. 2012;287(3):1779-1789. DOI: 10.1074/jbc.M111.267732
7. Cooke V.G., Naik M.U., Naik U.P. Fibroblast growth factor-2 failed to induce angiogenesis in junctional adhesion molecule-A-deficient mice. Arterioscler Thromb Vasc Biol. 2006;26(9):2005-2011. DOI: 10.1161/01.ATV.0000234923.79173.99
8. Daniele L.L., Adams R.H., Durante D.E., Pugh E.N. Jr., Philp N.J. Novel distribution of junctional adhesion molecule-C in the neural retina and retinal pigment epithelium. J Comp Neurol. 2007;505(2):166-176. DOI: 10.1002/cne.21489
9. Díaz-Coránguez M., Liu X., Antonetti D.A. Tight Junctions in Cell Proliferation. Int J Mol Sci. 2019;20(23):5972. DOI: 10.3390/ijms20235972.
10. Ding X., Bai Y., Zhu X., Li T., Jin E., Huang L., Yu W., Zhao M. The effects of pleiotrophin in proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol. 2017;255(5):873-884. DOI: 10.1007/s00417-016-3582-9
11. Early Treatment Diabetic Retinopathy Study Research Group Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1. Arch Ophthalmol. 1985;(103):1796-1806.
12. Fu Y., Tang M., Xiang X., Liu K., Xu X. Glucose affects cell viability, migration, angiogenesis and cellular adhesion of human retinal capillary endothelial cells via SPARC. Exp Ther Med. 2019;17(1): 273-283. DOI: 10.3892/etm.2018.6970
13. Gallego B.I., Salazar J.J., de Hoz R., Rojas B., Ramírez A.I., Salinas-Navarro M., Ortín-Martínez A., Valiente-Soriano F.J. et al. IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma. J Neuroinflammation. 2012;(9):92. DOI: 10.1186/1742-2094-9-92
14. Gavrilova N.A., Borzenok S.A., Zaletaev D.V., Solomin V.A., Gadzhieva N.S., Tishchenko O.E., Komova O.U., Zinov'eva A.V. Molecular genetic mechanisms of influence of laser radiation with 577 nm wavelength in a microimpulse mode on the condition of the retina. Exp Eye Res. 2019;(185):107650. DOI: 10.1016/j.exer.2019.04.018
15. Haase M., Fitze G. HSP90AB1: Helping the good and the bad. Gene. 2016;575(2 Pt 1):171-186. DOI: 10.1016/j.gene.2015.08.063
16. Hammes H.P., Du X., Edelstein D., Taguchi T., Matsumura T., Ju Q., Lin J., Bierhaus A. et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med. 2003;9(3):294-299. DOI: 10.1038/nm834
17. Hedhli N., Falcone D.J., Huang B., Cesarman-Maus G., Kraemer R., Zhai H., Tsirka SE., Santambrogio L. et al. The annexin A2/S100A10 system in health and disease: emerging paradigms. J Biomed Biotechnol. 2012;(2012):406273. DOI: 10.1155/2012/406273
18. Kim C.W., Son K.N., Choi S.Y., Kim J. Human lactoferrin upregulates expression of KDR/Flk-1 and stimulates VEGF-A-mediated endothelial cell proliferation and migration. FEBS Lett. 2006;580(18):4332-4336. DOI: 10.1016/j.febslet.2006.06.091
19. Kozak I., Luttrull J.K. Modern retinal laser therapy. Saudi J Ophthalmol. 2015;29(2):137-146. DOI: 10.1016/j.sjopt.2014.09.001
20. Lennikov M.S., Lennikov A., Tang S., Huang H. Proteomics reveals ablation of placental growth factor inhibits the insulin resistance pathways in diabetic mouse retina. bioRxiv. 2018. DOI: 10.1101/338368.
21. Li D, Xie K., Zhang L., Yao X., Li H., Xu Q., Wang X., Jiang J. et al. Dual blockade of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) exhibits potent anti-angiogenic effects. Cancer Lett. 2016;377(2):164-173. DOI: 10.1016/j.canlet.2016.04.036
22. Malecaze F., Mascarelli F., Bugra K., Fuhrmann G., Courtois Y., Hicks D. Fibroblast growth factor receptor deficiency in dystrophic retinal pigmented epithelium. J Cell Physiol. 1993;154(3):631-642. DOI: 10.1002/jcp.1041540323
23. Mandell K.J., Berglin L., Severson E.A., Edel-hauser H.F., Parkos C.A. Expression of JAM-A in the human corneal endothelium and retinal pigment epithelium: localization and evidence for role in barrier function. Invest Ophthalmol Vis Sci. 2007;48(9):3928-3936. DOI: 10.1167/iovs.06-1536
24. Miljkovic-Licina M., Hammel P., Garrido-Urbani S., Lee B.P., Meguenani M., Chaabane C., Bochaton-Piallat M.L., Imhof B.A. Targeting olfactomedin-like 3 inhibits tumor growth by impairing angiogenesis and pericyte coverage. Mol Cancer Ther. 2012;11(12):2588-2599. DOI: 10.1158/1535-7163.MCT-12-0245
25. Miyamoto K., Khosrof S., Bursell S.E., Moromi-zato Y., Aiello L.P., Ogura Y., Adamis A.P. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability is mediated by intercellular adhesion molecule-1 (ICAM-1). Am J Pathol. 2000;156(5):1733-1739. DOI: 10.1016/S0002-9440(10)65044-4
26. Naik M.U., Stalker T.J., Brass L.F., Naik U.P. JAM-A protects from thrombosis by suppressing integrin αIIbβ3-dependent outside-in signaling in platelets. Blood. 2012;119(14):3352-3360. DOI: 10.1182/blood-2011-12-397398
27. Preliminary report on effects of photocoagulation therapy. The Diabetic Retinopathy Study Research Group. Am J Ophthalmol. 1976;81(4):383-396. DOI: 10.1016/0002-9394(76)90292-0
28. Riddell J.R., Maier P., Sass S.N., Moser M.T., Foster B.A., Gollnick S.O. Peroxiredoxin 1 Stimulates Endothelial Cell Expression of VEGF via TLR4 Dependent Activation of HIF-1a. PLoS ONE. 2012;7(11):e50394. DOI: 10.1371/journal.pone.0050394
29. Saker S., Stewart E.A., Browning A.C., Allen C.L., Amoaku W.M. The effect of hyperglycaemia on permeability and the expression of junctional complex molecules in human retinal and choroidal endothelial cells. Exp Eye Res. 2014;(121):161-167. DOI: 10.1016/j.exer.2014.02.016
30. Scholz P., Altay L., Fauser S. A Review of Subthreshold Micropulse Laser for Treatment of Macular Disorders. Adv Ther. 2017;34(7):1528-1555. DOI: 10.1007/s12325-017-0559-y
31. Schwarzer P., Kokona D., Ebneter A., Zinker-nagel M.S. Effect of Inhibition of Colony-Stimulating Factor 1 Receptor on Choroidal Neovascularization in Mice. Am J Pathol. 2020;190(2):412-425. DOI: 10.1016/j.ajpath.2019.10.011
32. Tababat-Khani P., Berglund L.M., Agardh C.D., Gomez M.F., Agardh E. Photocoagulation of human retinal pigment epithelial cells in vitro: evaluation of necrosis, apoptosis, cell migration, cell proliferation and expression of tissue repairing and cytoprotective genes. PLoS One. 2013;8(8):e70465. DOI: 10.1371/journal.pone.0070465
33. Tae N., Lee S., Kim O., Park J., Na S., Lee J.H. Syntenin promotes VEGF-induced VEGFR2 endocytosis and angiogenesis by increasing ephrin-B2 function in endothelial cells. Oncotarget. 2017;8(24):38886-38901. DOI: 10.18632/oncotarget.16452
34. Wilson A.S., Hobbs B.G., Shen W.Y., Speed T.P., Schmidt U., Begley C.G., Rakoczy P.E. Argon laser photocoagulation-induced modification of gene expression in the retina. Invest Ophthalmol Vis Sci. 2003;44(4):1426-1434. DOI: 10.1167/iovs.02-0622
35. Wu W.C., Kao Y.H., Hu P.S., Chen J.H. Geldanamycin, a HSP90 inhibitor, attenuates the hypoxia-induced vascular endothelial growth factor expression in retinal pigment epithelium cells in vitro. Exp Eye Res. 2007;85(5):721-731. DOI: 10.1016/j.exer.2007.08.005
36. Yadav N.K., Jayadev C., Rajendran A., Nagpal M. Recent developments in retinal lasers and delivery systems. Indian J Ophthalmol. 2014;62(1):50-54. DOI: 10.4103/0301-4738.126179
37. Yoshida S., Yashar B.M., Hiriyanna S., Swaroop A. Microarray analysis of gene expression in the aging human retina. Invest Ophthalmol Vis Sci. 2002;43(8):2554-2560.
38. Zeng L., Xiao Q., Chen M., Margariti A., Martin D., Ivetic A., Xu H., Mason J. et al. Vascular endothelial cell growth-activated XBP1 splicing in endothelial cells is crucial for angiogenesis. Circulation. 2013;127(16):1712-1722. DOI: 10.1161/CIRCULATIONAHA.112.001337
39. Zhu N.L., Wu L., Liu P.X., Gordon E.M., Ander-son W.F., Starnes V.A., Hall F.L. Downregulation of cyclin G1 expression by retrovirus-mediated antisense gene transfer inhibits vascular smooth muscle cell proliferation and neointima formation. Circulation. 1997;96(2):628-635. DOI: 10.1161/01.cir.96.2.628
40. Zhu X., Bai Y., Yu W., Pan C., Jin E., Song D., Xu Q., Yao Y. et al. The effects of pleiotrophin in proliferative diabetic retinopathy. PLoS One. 2015;10(1):e0115523. DOI: 10.1371/journal.pone.0115523
Рецензия
Для цитирования:
Гаврилова Н.А., Гуревич К.Г., Комова О.Ю., Зиновьева А.В. Анализ ретинальной экспрессии генов, участвующих в регуляции ангиогенеза и функций эндотелиального барьера после воздействия лазерного излучения с длиной волны 577 нм в непрерывном режиме на сетчатку. Человек и его здоровье. 2021;24(2):37-45. https://doi.org/10.21626/vestnik/2021-2/05
For citation:
Gavrilova N.A., Gurevich K.G., Komova O.Yu., Zinoveva A.V. Analysis of retinal expression of genes involved in the regulation of angiogenesis and endothelial barrier function following exposure of the retina to 577 nm wavelength laser light in continuous mode. Humans and their health. 2021;24(2):37-45. (In Russ.) https://doi.org/10.21626/vestnik/2021-2/05