Preview

Humans and their health

Advanced search

Morphological assessment of tissue response to subcutaneous implantation of spider silk

https://doi.org/10.21626/vestnik/2025-3/02

EDN: GTSNSE

Abstract

Objective - to evaluate the early tissue response to implantation of different types of spider silk in mice.

Materials and methods. The pilot study was conducted on 30 white mature male BALB/c mice (20±5 g) divided into 6 groups: intact animals, sham-operated animals (control), and 4 groups with spider silk implantation. The spiderweb was collected by pulling or from frames. Implantation was performed under zoletil-xylazine anesthesia, the material was placed subcutaneously in the the interscapular area. After 7 days, the histology by hematoxylin-eosin staining and the thickness of the inflammatory infiltrate were assessed.

Results. Histological examination of tissues revealed an inflammatory reaction in all experimental groups and was characterized by polymorphonuclear leukocyte activity and lymphoplasmacytic infiltrate. By the 7th day of the experiment, foreign body giant cells and epithelioid cells were absent, indicating the absence of a granulomatous reaction. Morphometric assessment of the thickness of the perifocal inflammation zone showed a statistically significant increase in the thickness of the infiltrate in the groups with Chilobrachys dyscolus, Harpactira pulchripes, and Nephila pilipes spider silk compared to the control group. However, no differences were found between the experimental groups.

Conclusion. All studied types of spiderweb caused acute inflammation with polymorphonuclear leukocyte infiltration without granulomatosis. No statistically significant differences in the severity of the reaction between different types of silk were found.

References

1. Gosline J.M., DeMont M.E., Denny M.W. The structure and properties of spider silk. Endeavour. 1986;10(1):37-43. DOI: 10.1016/0160-9327(86)90049-9.

2. Ko F.K., Wan L.Y. Engineering properties of spider silk. Handbook of Properties of Textile and Technical Fibres. 2018:185-220. DOI: 10.1016/b978-0-08-101272-7.00006-7.

3. Ko F.K., Kawabata S., Inoue M., Niwa M., Fossey S., Song J.W. Engineering Properties of Spider Silk. MRS Proceedings. 2001;702:U1.4.1. DOI: 10.1557/proc-702-u1.4.1.

4. Vollrath F., Knight D.P. Liquid crystalline spinning of spider silk. Nature. 2001;410(6828):541-548. DOI: 10.1038/35069000.

5. Kornfeld T., Vogt P., Bucan V., Peck C.-T., Reimers K., Radtke C. Characterization and schwann cell seeding of up to 15.0 cm long spider silk nerve conduits for reconstruction of peripheral nerve defects. J Funct Biomater. 2016;7(4):30. DOI: 10.3390/jfb7040030.

6. Resch A., Wolf S., Mann A., Weiss T., Stetco A.-L., Radtke C. Co-culturing human adipose derived stem cells and schwann cells on spider silk-a new approach as prerequisite for enhanced nerve regeneration.Int J Mol Sci. 2018;20(1):71. DOI: 10.3390/ijms20010071.

7. Roloff F., Strauss S., Vogt P.M., Bicker G., Radtke C. Spider silk as guiding biomaterial for human model neurons. BioMed Res Int. 2014;2014:906819. DOI: 10.1155/2014/906819.

8. Kornfeld T., Nessler J., Helmer C., Hannemann R., Waldmann K.H., Peck C.T., Hoffmann P., Brandes G., et al. Spider silk nerve graft promotes axonal regeneration on long distance nerve defect in a sheep model. Biomaterials. 2021;271:120692. DOI: 10.1016/j.biomaterials.2021.120692.

9. Vernadakis A.J., Koch H., Mackinnon S.E. Management of neuromas. Clin Plast Surg. 2003;30(2):247-268. DOI: 10.1016/S0094-1298(02)00104-9.

10. Lee M., Guyuron B. Postoperative Neuromas. Nerves and Nerve Injuries. 2015;2:99-112. DOI: 10.1016/B978-0-12-802653-3.00056-7.

11. Bulkina N.V., Vedyayeva A.P., Ivanov P.V., Gavryushova L.V. Biologicheskiye reaktsii organizma na bioimplantaty. Obzor. Klinicheskaya stomatologiya. 2016;2(78):46-49 (in Russ.). EDN: VZXHAX.

12. Kastellorizios M., Tipnis N., Burgess D.J. Foreign Body Reaction to Subcutaneous Implants. Immune Responses to Biosurfaces. 2015;865:93-108. DOI: 10.1007/978-3-319-18603-0_6.

13. Anderson J.M., Rodriguez A., Chang D.T. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86-100. DOI: 10.1016/j.smim.2007.11.004.

14. Kyriakides T.R., Bornstein P. Matricellular proteins as modulators of wound healing and the foreign body response. Thromb Haemost. 2003;90(6):986-992. DOI: 10.1160/TH03-06-0399.

15. Morais J.M., Papadimitrakopoulos F., Burgess D.J. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 2010;12(2):188-196. DOI: 10.1208/s12248-010-9175-3.

16. Namdari S., Melnic C., Huffman G.R. Foreign body reaction to acellular dermal matrix allograft in biologic glenoid resurfacing. Clin Orthop Relat Res. 2013;471(8):2455-2458. DOI: 10.1007/s11999-013-2904-z.

17. Nomoto K. Mechanism of the response of the living body to foreign material. Allergy. 1990;39(5):437-441.

18. Ibler B, Michalik P, Fischer K. Factors affecting lifespan in bird-eating spiders (Arachnida: Mygalomorphae, Theraphosidae) - A multi-species approach. Zoologischer Anzeiger. 2013;253(2):126-36. DOI: 10.1016/j.jcz.2013.09.004.

19. Boutry C., Blackledge T.A. Evolution of supercontraction in spider silk: structure-function relationship from tarantulas to orb-weavers. J Exp Biol. 2010;213(Pt 20):3505-3514. DOI: 10.1242/jeb.046110.

20. ISO 10993-6:2016 Biological evaluation of medical devices - Part 6: Tests for local effects after implantation.

21. Pucinelli C.M., Silva R.A.B.D., Borges L.L., Borges A.T.D.N., Nelson-Filho P., Consolaro A., Gaton-Hernández P., Silva L.A.B.D. Tissue Response after Subcutaneous Implantation of Different Glass Ionomer-Based Cements. Brazilian Dental Journal. 2019;30(6):599-606. DOI: 10.1590/0103-6440201902619.

22. Okamoto M., Matsumoto S., Moriyama K., Huang H., Watanabe M., Miura J., Sugiyama K., Hirose Y., et al. Biological Evaluation of the Effect of Root Canal Sealers Using a Rat Model. Pharmaceutics. 2022;14(10):2038. DOI: 10.3390/pharmaceutics14102038.

23. Kheiri L., Golestaneh A., Mehdikhani M., Razavi S.M., Etemadi N. Histological evaluation of subcutaneous tissue reactions to a novel bilayer polycaprolactone/silk fibroin/strontium carbonate nanofibrous membrane for guided bone regeneration: a study in rabbits. Clin Exp Dent Res. 2025;11(3):e70140. DOI: 10.1002/cre2.70140.

24. Pereira N.B., Campos P.P., Parreiras P.M., Chiarini-Garcia H., Socarrás T.O., Kalapothakis E., Andrade S.P., Moro L. Apoptosis, mast cell degranulation and collagen breakdown in the pathogenesis of loxoscelism in subcutaneously implanted sponges. Toxicon. 2014;84:7-18. DOI: 10.1016/j.toxicon.2014.03.003.

25. Alipour S., Omranipour R., Eslami B., Khalighfard S., Saberi A., Shabestari A., Alizadeh A.M. A pilot study of the use of human amniotic membrane as subcutaneous implants in a mouse model: a potential for temporary substitutes in two-stage breast reconstructions. BMC Womens Health. 2023;23(1):367. DOI: 10.1186/s12905-023-02531-9.

26. Kefayat A., Hosseini M., Ghahremani F., Jolfaie N.A., Rafienia M. Biodegradable and biocompatible subcutaneous implants consisted of pH-sensitive mebendazole-loaded/folic acid-targeted chitosan nanoparticles for murine triple-negative breast cancer treatment. J Nanobiotechnology. 2022;20(1):169. DOI: 10.1186/s12951-022-01380-2.

27. Henn D., Chen K., Maan Z.N., Greco A.H., Moortgat Illouz S.E., Bonham C.A., Barrera J.A., Trotsyuk A.A., et al. Cryopreserved human skin allografts promote angiogenesis and dermal regeneration in a murine model.Int Wound J. 2020;17(4):925-36. DOI: 10.1111/iwj.13349

28. Vollrath F., Barth P., Basedow A., Engström W., List H. Local tolerance to spider silks and protein polymers in vivo. In Vivo. 2002;16(4):229-234.

29. Koop F., Strauß S., Peck C.T., Aper T., Wilhelmi M., Hartmann C., Hegermann J., Schipke J., et al. Preliminary application of native Nephila edulis spider silk and fibrin implant causes granulomatous foreign body reaction in vivo in rat's spinal cord. PLoS One. 2022;17(3):e0264486. DOI: 10.1371/journal.pone.0264486.

30. Allmeling C., Jokuszies A., Reimers K., Kall S., Vogt P.M. Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit. J Cell Mol Med. 2006;10(3):770-777. DOI: 10.1111/j.1582-4934.2006.tb00436.x.

31. Allmeling C., Jokuszies A., Reimers K., Kall S., Choi C.Y., Brandes G., Kasper C., Scheper T., et al. Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Prolif. 2008;41(3):408-420. DOI: 10.1111/j.1365-2184.2008.00534.x.

32. Radtke C., Allmeling C., Waldmann K.H., Reimers K., Thies K., Schenk H.C., Hillmer A., Guggenheim M., et al. Spider silk constructs enhance axonal regeneration and remyelination in long nerve defects in sheep. PLoS One. 2011;6:e16990. DOI: 10.1371/journal.pone.0016990.


Review

For citations:


Zamanova R.A., Fairushina A.I., Vlasova A.O.,   Morphological assessment of tissue response to subcutaneous implantation of spider silk. Humans and their health. 2025;28(3):16-24. (In Russ.) https://doi.org/10.21626/vestnik/2025-3/02. EDN: GTSNSE

Views: 97

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5746 (Print)
ISSN 1998-5754 (Online)