Preview

Humans and their health

Advanced search

Effect of glyprolines on serum caspase levels under “social” stress

https://doi.org/10.21626/vestnik/2021-2/06

Abstract

Objective. To investigate the effect of glyprolines on the levels of initiating and effector caspases in the serum of white rats under "social" stress.

Materials and methods. The study was conducted on 90 white male rats of 6 months of age. All manipulations with animals were carried out in accordance with international and domestic requirements for working with laboratory animals. When modeling "social" stress, groups of animals with aggressive and submissive behavior were formed. Laboratory animals, taking into account the types of behavior, were divided into groups (n=10): a group of intact males (control); a group of animals exposed to" social " stress for 20 days (stress); groups of individuals who received intraperitoneal Selank (Thr-Lys-Pro-Arg-Pro-Gly-Pro), Pro-Gly-Pro, Pro-Gly-Pro-Leu at doses of 100 mcg/kg / day from the 1st day of stress exposure within a 20- day course. The effect of neuropeptides on the activity of apoptosis processes was evaluated by determining the level of initiating and effector caspases (caspase-8 and caspase-3) (ELISA Kit for Caspase-8 and ELISA Kit for Caspase-3; USA) in the blood serum of white rats by enzyme immunoassay.

Results. According to the results of the study, it was found that under conditions of "social" stress, an increase in apoptotic processes was observed, accompanied by an increase in the level of caspase-3 and caspase-8 in the blood serum of white rats. The introduction of the studied compounds against the background of stress contributed to a decrease in the level of the studied indicators, which is most likely due to the presence of antiapoptotic action in glyprolins due to inhibition of the caspase-dependent cascade of apoptosis reactions, as a result of which the destruction of cellular structures occurs by hydrolysis of nuclear lamina, cleavage of adhesive proteins, destruction of the cytoskeleton.

Conclusion. Thus, the conducted study established the presence of Thr-Lys-Pro-Arg-Pro-Gly-Pro (Selank), Pro-Gly-Pro and Pro-Gly-Pro-Leu under conditions of stress-induced antiapoptotic activity due to inhibition of the caspase-dependent cascade of apoptosis reactions.

About the Authors

Anna L. Yasenyavskaya
Astrakhan State Medical University
Russian Federation

Cand. Sci. (Med.), Associate Professor, Head of the Research Center, Associate Professor of the Department of Pharmacognosy, Pharmaceutical Technology and Biotechnology



Alexandra A. Tsibizova
Astrakhan State Medical University
Russian Federation

Cand. Sci. (Pharm.), Associate Professor of the Department of Pharmacognosy, Pharmaceutical Technology and Biotechnology



Lyudmila A. Andreeva
Institute of Molecular Genetics of the National Research Center “Kurchatov Institute”
Russian Federation

Cand. Sci. (Chem.), Head of the Regulatory Peptides Sector of the Department of Physiologically Active Substances Chemistry



Nikolay F. Myasoedov
Institute of Molecular Genetics of the National Research Center “Kurchatov Institute”
Russian Federation

Dr. Sci. (Chem.), Professor, Academician of the Russian Academy of Sciences, Head of the Department of Chemistry of Physiologically Active Substances



Olga A. Bashkina
Astrakhan State Medical University
Russian Federation

Dr. Sci. (Med.), Professor, Head of the Department of Faculty Pediatrics



Marina A. Samotrueva
Astrakhan State Medical University
Russian Federation

Dr. Sci. (Med.), Professor, Head of the Department of Pharmacognosy, Pharmaceutical Technology and Biotechnology



References

1. Дятлова А.С., Дудков А.В., Линькова Н.С., Хавинсон В.Х. Молекулярные маркеры каспаза-зависимого и митохондриального апоптоза: роль в развитии патологии и в процессах клеточного старения. Успехи современной биологии. 2018;138(2):126-137. DOI: 10.7868/S0042132418020023

2. Канунникова Н.П. Нейропротекторные свойства нейропептидов. Журнал Гродненского государственного медицинского университета. 2017;15(5):492-498. DOI: 10.25298/2221-8785-2017-15-5-492-498

3. Кудрявцева Н.Н. Серотонергический контроль агрессивного поведения: новые подходы - новые интерпретации (обзор). Журнал высшей нервной деятельности им. И.П. Павлова. 2015;65(5):546. DOI: 10.7868/S0044467715050081

4. Майборода А.А. Апоптоз - гены и белки. Сибирский медицинский журнал (Иркутск). 2013;118(3):130-135

5. Ясенявская А.Л., Самотруева М.А., Мясоедов Н.Ф., Андреева Л.А. Влияние семакса на уровень интерлейкина-1β в условиях «социального» стресса. Медицинский академический журнал. 2019; 9(S):192-194. DOI: 10.17816/MAJ191S1192-194

6. Ясенявская А.Л., Самотруева М.А., Цибизова А.А., Мясоедов Н.Ф., Андреева Л.А. Влияние глипролинов на перекисное окисление липидов в гипоталамической и префронтальной областях головного мозга в условиях «социального» стресса. Астраханский медицинский журнал. 2020;15(3):79-85. DOI: 10.17021/2020.15.3.79.85

7. Avgustinovich D.F., Kovalenko I.L., Kudryavtseva N.N. A model of anxious depression: persistence of behavioral pathology. Neurosci and Behav Physiol. 2005;35(9):917-924. DOI: 10.1007/s11055-005-0146-6

8. Benham G., Charak R. Stress and sleep remain significant predictors of health after controlling for negative affect. Stress Health. 2019;35(1):59-68. DOI: 10.1002/smi.2840

9. Carr R., Frings S. Neuropeptides in sensory signal processing. Cell Tissue Res. 2019;375(1):217-225. DOI: 10.1007/s00441-018-2946-3

10. Cmielova J., Havelek R., Soukup T., Jiroutová A., Visek B., Suchánek J., Vavrova J., Mokry J. et al. Gamma radiation induces senescence in human adult mesenchymal stem cells from bone marrow and periodontal ligaments. Int J Radiat Biol. 2012;88(5):393-404. DOI: 10.3109/09553002.2012.666001

11. Cohen S., Gianaros P.J., Manuck S.B. A Stage Model of Stress and Disease. Perspect Psychol Sci. 2016;11(4):456-463. DOI: 10.1177/1745691616646305

12. D'Arcy M.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582-592. DOI: 10.1002/cbin.11137

13. D'Sa-Eipper C., Roth K.A. Caspase regulation of neuronal progenitor cell apoptosis. Dev Neurosci. 2000;22(1-2):116-124. DOI: 10.1159/000017433

14. Fricker L.D. Carboxypeptidase E and the Identification of Novel Neuropeptides as Potential Therapeutic Targets. Adv Pharmacol. 2018;(82):85-102. DOI: 10.1016/bs.apha.2017.09.001

15. Furusawa Y., Iizumi T., Fujiwara Y., Zhao Q.L., Tabuchi Y., Nomura T., Kondo T. Inhibition of checkpoint kinase 1 abrogates G2/M checkpoint activation and promotes apoptosis under heat stress. Apoptosis. 2012;17(1):102-112. DOI: 10.1007/s10495-011-0660-7

16. Jacotot É. Inhibition des caspases - De la biologie et thanatologie cellulaires au développement clinique de candidats medicaments. Med Sci (Paris). 2020;36(12):1143-1154. [Jacotot É. Caspase inhibition: From cellular biology and thanatology to potential clinical agents. Med Sci (Paris). 2020;36(12):1143-1154. (in French)]. DOI: 10.1051/medsci/2020222.

17. Koolhaas J.M., de Boer S.F., Buwalda B., Meerlo P. Social stress models in rodents: Towards enhanced validity. Neurobiol Stress. 2016;(6):104-112. DOI: 10.1016/j.ynstr.2016.09.003

18. Kumar S. Caspase function in programmed cell death. Cell Death Differ. 2007;14(1):32-43. DOI: 10.1038/sj.cdd.4402060

19. Magariños A.M., Schaafsma S.M., Pfaff D.W. Impacts of stress on reproductive and social behaviors. Front Neuroendocrinol. 2018;(49):86-90. DOI: 10.1016/j.yfrne.2018.01.002

20. Muñoz-Pinedo C., López-Rivas A. A role for caspase-8 and TRAIL-R2/DR5 in ER-stress-induced apoptosis. Cell Death Differ. 2018;25(1):226. DOI: 10.1038/cdd.2017.155

21. Obeng E. Apoptosis (programmed cell death) and its signals - A review. Braz J Biol. 2021;81(4):1133-1143. DOI: 10.1590/1519-6984.228437

22. O'Connor D.B., Thayer J.F., Vedhara K. Stress and Health: A Review of Psychobiological Processes. Annu Rev Psychol. 2021;(72):663-688. DOI: 10.1146/annurev-psych-062520-122331

23. Park C., Rosenblat J.D., Brietzke E., Pan Z., Lee Y., Cao B., Zuckerman H., Kalantarova A. et al. Stress, epigenetics and depression: A systematic review. Neurosci Biobehav Rev. 2019;(102):139-152. DOI: 10.1016/j.neubiorev.2019.04.010

24. Samotrueva M.A., Yasenyavskaya A.L., Murtalieva V.K., Bashkina O.A., Myasoedov N.F., Andreeva L.A., Karaulov A.V. Experimental Substantiation of Application of Semax as a Modulator of Immune Reaction on the Model of "Social" Stress. Bull Exp Biol Med. 2019;166(6):754-758. DOI: 10.1007/s10517-019-04434-y

25. Tajti J., Szok D., Majláth Z., Tuka B., Csáti A., Vécsei L. Migraine and neuropeptides. Neuropeptides. 2015;(52):19-30. DOI: 10.1016/j.npep.2015.03.006

26. Thiele T.E. Neuropeptides and Addiction: An Introduction. Int Rev Neurobiol. 2017;(136):1-3. DOI: 10.1016/bs.irn.2017.07.001

27. Vyunova T.V., Andreeva L.A., Shevchenko K.V., Myasoedov N.F. An integrated approach to study the molecular aspects of regulatory peptides biological mechanism. J Labelled Comp Radiopharm. 2019;62(12):812-822. DOI: 10.1002/jlcr.3785

28. Xu X., Lai Y., Hua Z.C. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep. 2019;39(1):BSR20180992. DOI: 10.1042/BSR20180992

29. Yang L., Zhao Y., Wang Y., Liu L., Zhang X., Li B., Cui R. The Effects of Psychological Stress on Depression. Curr Neuropharmacol. 2015;13(4):494-504. DOI: 10.2174/1570159x1304150831150507


Review

For citations:


Yasenyavskaya A.L., Tsibizova A.A., Andreeva L.A., Myasoedov N.F., Bashkina O.A., Samotrueva M.A. Effect of glyprolines on serum caspase levels under “social” stress. Humans and their health. 2021;24(2):46-52. (In Russ.) https://doi.org/10.21626/vestnik/2021-2/06

Views: 420


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5746 (Print)
ISSN 1998-5754 (Online)