Evaluation of the effectiveness of pharmacological correction of experimental osteoporosis by glucosamine sulfate, strontium chloride, and their combination
https://doi.org/10.21626/vestnik/2020-2/07
Abstract
Objective. To study the osteoprotective activity of glucosamine sulfate, strontium chloride, and their combinations on a model of experimental osteoporosis in laboratory animals (OVX model) in comparison with the Strometta preparation and control (OVX without correction).
Materials and methods. The material for the study was female Wistar rats weighing 250 ± 30 g. To simulate osteoporosis, bilateral ovariectomy was performed. Microcirculation was evaluated by Doppler flowmetry. Digital X-ray densitometry was used to determine bone density. Using histological morphometry, the transverse size of the trabeculae of the spongy bone tissue was studied.
Results. In such parameters as bone density, microcirculation, and the average width of bone trabeculae, significant differences were established compared with the control (OVX without correction) for groups with correction of glucosamine sulfate, strontium chloride, and their combination, and thus their osteoprotective effect was confirmed.
Conclusion. In the future, glucosamine sulfate, strontium chloride, and their combination can be used for drug prevention of osteoporosis in the postmenopausal period. However, for the introduction of strontium chloride and its combination with glucosamine sulfate into clinical practice, it is necessary to conduct complete preclinical and clinical trials.
About the Authors
Aleksandr V. AnikanovRussian Federation
Full-Time Postgraduate of Traumatology and Orthopedics Department
Elena B. Artyushkova
Russian Federation
DBSc, Professor, Professor of Pharmacology Department, Director of Research Institute of Experimental Medicine
Aleksandr V. Faitelson
Russian Federation
DM, Professor, Professor of Traumatology and Orthopedics Department
Densingh Samuel Raj Rajkumar
Russian Federation
PhD in Medicine, Associate Professor, Associate Professor of Traumatology and Orthopedics Department
References
1. Belaya Zh.E., Rozhinskaya L.Ya. Anabolic therapy of osteoporosis. Teripaparatide: efficacy, safety and scope. Osteoporosis and bone diseases. 2013;16(2):32-40 (in Russ.).
2. Gromova O.A., Torshin I.Yu., Lila A.M., Shostak N.A., Rudakov K.V. Molecular mechanisms of myoprotective action of chondroitin sulfate and glucosamine sulfate in sarcopenia. Nevrologiya, Neiropsikhiatriya, Psikhosomatika. 2019;11(1):117-124 (in Russ.). DOI: 10.14412/2074-2711-2019-1-117-124
3. Koklina N.U., Gudyrev O.S., Faitelson A.V., Pokrovskiy M.V. The study of antiosteoporotic action of nanoparticulated resveratrol and losartan. Kuban Scientific Medical Bulletin. 2014;6:46-51 (in Russ.).
4. Kosarev V.V., Babanov S.A. Effects of modern chondroprotectors in osteoarthritis. Medical Council. 2014;5:92-99 (in Russ.).
5. Marchenkova L.A., Dreval' A.V., Kriukova I.V., Vishniakova M.V., Poliakova E.Iu., Tishenina R.S., Rubin M.P. Efficacy and safety of bivalos therapy in patients with postmenopausal osteoporosis without calcium and vitamin d supplement. Problems of Endocrinology. 2010;56(1):35-41 (in Russ.).
6. Mel'nichenko G.A., Belaya Z.E., Rozhinskaya L.Y., Toroptsova N.V., Alekseeva L.I., Biryukova E.V., Grebennikova T.A., Dzeranova L.K., et al. Russian federal clinical guidelines on the diagnostics, treatment, and prevention of osteoporosis. Problems of Endocrinology. 2017;63(6):392-426 (in Russ.). DOI: 10.14341/probl2017636392-426
7. Minasov T.B., Minasov B.Sh. The effectiveness of combination therapy of postmenopausal osteoporosis with the use of double-acting drugs. Traumatology and Orthopedics of Russia. 2011;4(62):92-94 (in Russ.).
8. Pigarova E.A., Rozhinskaya L.Ya., Belaya Zh.E., Dzeranova L.K., Karonova T.L., Ilyin A.V., Melnichenko G.A., Dedov I.I. Russian association of endocrinologists recommendations for diagnosis, treatment and prevention of vitamin D deficiency in adults. Problems of Endocrinology. 2016;62(4):60-84 (in Russ.). DOI: 10.14341/probl201662460-84
9. Remizov P.P., Gudyrev O.S., Sobolev M.S., Korokina L.V., Faitelson A.V., Dubrovin G.M. Study of the level of microcirculation in bone in osteoporosis and osteoporotic fractures during therapy with recombinant erythropoietin, rosuvastatin and their combination. Scientific bulletins of Belgorod State University. Series: Medicine. Pharmacia. 2014;11-1(182):118-122 (in Russ.).
10. Smirnov A.V. X-ray diagnosis of primary osteoporosis. Modern rheumatology. 2011;5(1):47-52 (in Russ.).
11. Faitel'son A.V., Dubrovin G.M., Gudyrin O.S., Pokrovskiy M.V., Ivanov A.V., Radjkumar D.S.R. Comparative assessment of endothelium-associated correction of experimental osteoporosis with resveratrol and etoksidol. N.N. Priorov Journal of Traumatology and Orthopedics. 2012;1:8-11 (in Russ.).
12. Camacho P.M., Petak S.M., Binkley N., Clarke B.L., Harris S.T., Hurley D.L., Kleerekoper M., Lewiecki E.M., et al. American association of clinical endocrinologists and American college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis. Endocr Pract. 2016;22(9):1111-1118. DOI: 10.4158/EP161435.ESGL
13. Deeks E.D., Dhillon S. Strontium ranelate: a review of its use in the treatment of postmenopausal osteoporosis. Drugs. 2010;70(6):733-759. DOI: 10.2165/10481900-000000000-00000
14. Jang B.C., Sung S.H., Park J.G., Park J.W., Bae J.H., Shin D.H., Park G.Y., Han S.B., et al. Glucosamine hydrochloride specifically inhibits COX-2 by preventing COX-2 N-glycosylation and by increasing COX-2 protein turnover in a proteasome-dependent manner. J Biol Chem. 2007;282(38):27622-27632. DOI: 10.1074/jbc.M610778200
15. Jiang Z., Li Z., Zhang W., Yang Y., Han B., Liu W., Peng Y. Dietary natural N-acetyl-d-glucosamine prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis. Molecules. 2018;23(9):2302. DOI: 10.3390/molecules23092302
16. Johnston B.D., Ward W.E. The ovariectomized rat as a model for studying alveolar bone loss in postmenopausal women. Biomed Res Int. 2015;2015:635023. DOI: 10.1155/2015/635023
17. Kawashima M., Fujikawa Y., Itonaga I., Takita C., Tsumura H. The effect of selective cyclooxygenase-2 inhibitor on human osteoclast precursors to influence osteoclastogenesis in vitro. Mod Rheumatol. 2009;19(2):192-198. DOI: 10.1007/s10165-008-0149-6
18. Lesnyak O., Ershova O., Belova K., Gladkova E., Sinitsina O., Ganert O., Romanova M., Khodirev V., et al. Epidemiology of fracture in the Russian Federation and the development of a FRAX model. Arch Osteoporos. 2012;7:67-73. DOI: 10.1007/s11657-012-0082-3
19. Lv C., Wang L., Zhu X., Lin W., Chen X., Huang Z., Huang L., Yang S. Glucosamine promotes osteoblast proliferation by modulating autophagy via the mammalian target of rapamycin pathway. Biomed Pharmacother. 2018;99:271-277. DOI: 10.1016/j.biopha.2018.01.066
20. Whitaker M., Guo J., Kehoe T., Benson G. Bisphosphonates for osteoporosis - where do we go from here? N Engl J Med. 2012;366(22):2048-2051. DOI: 10.1056/NEJMp1202619
21. Yousefzadeh N., Kashfi K., Jeddi S., Ghasemi A. Ovariectomized rat model of osteoporosis: a practical guide. EXCLI J. 2020;19:89-107. DOI: 10.17179/excli2019-1990
Review
For citations:
Anikanov A.V., Artyushkova E.B., Faitelson A.V., Rajkumar D.S. Evaluation of the effectiveness of pharmacological correction of experimental osteoporosis by glucosamine sulfate, strontium chloride, and their combination. Kursk Scientific and Practical Bulletin "Man and His Health". 2020;(2):50-56. (In Russ.) https://doi.org/10.21626/vestnik/2020-2/07