Preview

Humans and their health

Advanced search

Search for new antimycotic agents: main trends and problems

https://doi.org/10.21626/vestnik/2020-1/09

Abstract

The problem of treatment of mycotic infections today is still relevant. Etiotropic therapy is an essential component of the pharmacotherapy of mycoses. A general criterion for the effectiveness of the use of antimycotics is the disappearance of clinical and instrumental signs of infection, as well as the eradication of the pathogen from the lesion. The purpose of this review is to analyze the main directions of searching for new compounds (groups of compounds) with antifungal activity for practical medicine, and the most important problems arising from these studies. The main difficulties arising from these studies is the high economic cost of such projects: significant financial investments are accompanied by a possible limitation of the circulation of these drugs due to their introduction into the reserve, as well as the spread of resistant strains against the background of the short duration of patent protection. The article presents the most commonly used classification of antifungal agents and their main mechanism of action. The main strategies for the development of new antifungal agents are highlighted: reprofiling the existing drugs that were previously used for a different purpose; modification of the existing antifungal drugs to increase effectiveness and reduce toxicity; the creation of new antifungal molecules by chemical synthesis or the identification of agents of natural origin that have a detrimental effect on fungal microbiota. The review presents data on compounds of various origins exhibiting antimycotic activity, obtained and described in recent decades. The characteristic of the mechanism and the spectrum of their action is given. Substances with a traditional mechanism of action associated with the influence on the cell wall of fungi (effect on the ergosterol system, impaired synthesis of 1,3-b-D-glucan) join the molecules that block the exchange of sphingolipids of the fungal cell, disrupting the synthesis of chitin, protein metabolism, etc.

About the Author

Valentina V. Novikova
Perm State Pharmaceutical Academy
Russian Federation
PhD in Medical Science, Аssociate Professor, Head of the Department of Microbiology


References

1. Бурова С.А. Особенности лечения грибковых инфекций кожи и ее придатков в группах риска. Клиническая дерматология и венерология. 2014;12(1):47-51

2. Гейн В.Л., Бобровская О.В., Русских А.А., Новикова В.В., Гейн О.Н., Карпенко Ю.Н., Чащина С.В., Дмитриев М.В. и др. Синтез и биологическая активность 5-арил-N-{4-[(1,3-тиазол-2-ил)cульфа-моил]фенил}1-фенилпиразол-3-карбоксамидов и их солей. Журн. общей химии. 2019;89(4):542-551

3. Зубов П.В., Новикова В.В. Разработка новых антибактериальных препаратов – проблемы и перспективы. Современные проблемы науки и образования. 2015;5:342. URL: http://www.science-education.ru/ru/article/view?id=22672

4. Климко Н.Н. Микозы: диагностика и лечение: руководство для врачей. 2-е изд., перераб. и доп. Москва: Ви Джи Групп, 2008. 336 с.

5. Митрофанов В.С. Системные антифунгальные препараты. Проблемы медицинской микологии. 2001;3(2):6-14

6. Навашин П.С. Антифунгальная химиотерапия. Успехи и проблемы. Антибиотики и химиотерапия. 1998;8:3-6

7. Недоговорова К.В. Противогрибковые средства для наружного применения в аптечных продажах. Новая аптека. Эффективное управление. 2010;7:19-20

8. Никитина И.В. Клинические особенности дерматомикозов. Русский медицинский журнал. 2009;17(6):411-416

9. Страчунский Л.С., Козлов С.Н. Современная антимикробная химиотерапия. Руководство для врачей. Москва: Боргес, 2002. 432 с.

10. Тарасенко Г.Н. Как избавиться от грибков? Новая аптека. Аптечный ассортимент. 2011;4-1:13-14

11. Сергеев Ю.В., Шпигель Б.И., Сергеев А.Ю. Фармакотерапия микозов. Москва: Медицина для всех, 2003. 200 с.

12. Справочник лекарственных средств РЛС. URL: https://www.rlsnet.ru

13. Ших Е.В., Сизова О.С., Махова А.А. Возможности применения гепатопротекторов в комбинированной терапии онихомикозов. Русский медицинский журнал. 2016;24(14):958-963

14. Aeed P.A., Young C.L., Nagiec M.M., Elhamme A.P. Inhibition of inositol phosphorylceramide synthase by the cyclic peptide aureobasidin A. Antimicrob Agents Chemother. 2009;53(2):496-504. DOI: 10.1128/AAC.00633-08.

15. Blankenship J.R., Steinbach W.J., Perfect J.R., Heitman J. Teaching old drugs new tricks: reincarnation immunosuppressants as antifungal drugs. Curr Opin Investig Drugs. 2003;4(2):192-199.

16. Christoffersen R.E. Antibiotics – an investment worth making? Nat Biotechnol. 2006;24(12):1512-1514. DOI: 10.1038/nbt1206-1512.

17. Fortwendel J.R., Juvvadi P.R., Pinchai N., Perfect B.Z., Alspaugh J.A., Perfect J.R., Steinbach W.J. Differential effects of inhibiting chitin and 1,3-β-D-glucan synthesis in ras and calcineurin mutants of Aspergillus fumigatus. Antimicrob Agents Chemother. 2009;53(2)4:76-482. DOI: 10.1128/AAC.01154-08.

18. Furumai T., Hatori M., Kakusima M., Ikeda T., Saitoh K., Kobaru S., authors. Bristol-Mayer Squibb Compay, assignee. Production of pradimicin antibiotics. United States of America patent US5194371A. 1991 Jul 31.

19. Ghannoum M.A., Kim H.G., Long L. Efficacy of aminocandin in the treatment of immunocompetent mice with haematogenously disseminated fluconazole- resistant candidiasis. J Antimicrob Chemother. 2007;59(3):556-559. DOI: 10.1093/jac/dkl525

20. Hanadate T., Tomishima M., Shiraishi N., Tanabe D., Morikawa H., Barrett D., Matsumoto S., Ohtomo K., Maki K. FR290581, a novel sordarin derivative: synthesis and antifungal activity. Bioorg Med Chem Lett. 2009;19(5):1465-1468. DOI: 10.1016/j. bmcl.2009.01.051.

21. Hasenoehrl A., Galic T., Ergovic G., Marsic N., Skerlev M., Mittendorf J.,Geschke U., Schmidt A., Schoenfeld W. In vitro activity and in vivo efficacy of icofungipen (PLD-118), a novel oral antifungal agent, against the pathogenic yeast Candida albicans. Antimicrob Agents Chemother. 2006;50(9):3011-3018. DOI: 10.1128/AAC.00254-06

22. Kagoshima Y., Mori M., Eiko Suzuki E., Kobayashi N., Shibayama T., Kubota M.; Kamai Y., Konosu T. Design, synthesis and antifungal activity of the novel water-soluble prodrug of antifungal triazole CS-758. Chem Pharm Bull (Tokyo). 2010;58(6):794-804. DOI: 10.1248 / cpb.58.794.

23. Kamai Y., Kakuta M., Shibayama T., Fukuoka T., Kuwahara S. Antifungal Activities of R-135853, a Sordarin Derivative, in Experimental Candidiasis in Mice. Antimicrob Agents Chemother. 2005;49(1):52-56. DOI: 10.1128/AAC.49.1.52-56.2005

24. Koselny K., Green J., DiDone L., Halterman J.P., Fothergill A.W., Wiederhold N.P., Patterson T.F., Cushion M.T., Rappelye C., Wellington M., Krysan D.J. The celecoxib derivative AR-12 has broad spectrum antifungal activity in vitro and improves the activity of fluconazole in a murine model of cryptococcosis. Antimicrob Agents Chemother. 2016;60(12):7115-7127. DOI: 10.1128/AAC.01061-16.

25. Kurome T., Inoue T., Takesako K., Kato I. Syntheses of antifungal aureobasidin A analogs with alkyl chains for structure-activity relationship. J Antibiot (Tokyo). 1998;51(3):359-367. DOI: 10.7164/antibiotics.51.359.

26. Nakamura I., Yoshimura S., Masaki T., Takase S., Ohsumi K., Hashimoto M., Furukawa S., Fujie A. ASP2397: a novel antifungal agent produced by Acremonium persicinum MF-347833. J Antibiot (Tokyo). 2017;70(1):45-51. DOI: 10.1038/ja.2016.107

27. Nishikawa H., Sakagami T., Yamada E., Fukuda Y., Hayakawa H., Nomura N., Mitsuyama J., Miyazaki T., Mukae H., Kohno S. T-2307, a novel arylamidine, is transported into Candida albicans by a high-affinity spermine and spermidine carrier regulated by Agp2. J Antimicrob Chemother. 2016;71(7):1845-1855. DOI: 10.1093/jac/dkw095.

28. Mitsuyama J., Nomura N., Hashimoto K., Yamada E., Nishikawa H., Kaeriyama M., Kimura A., Todo Y., Narita H. In vitro and in vivo antifungal activities of T-2307, a novel arylamidine. Antimicrob Agents Chemother. 2008;52(4):1318-1324. DOI: 10.1128/AAC.01159-07

29. Miyazaki M., Horii T., Hata K., Watanabe N.A., Nakamoto K., Tanaka K., Shirotori S., Murai N., Inoue S., Matsukura M., Abe S., Yoshimatsu K., Asada M. In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob Agents Chemother. 2011;55(10):4652-8. DOI: 10.1128/AAC.00291-11.

30. Perfect J.R. The antifungal pipeline: a reality check. Nat Rev Drug Discov. 2017;16(9):603-616. DOI: 10.1038/nrd.2017.46.

31. Pfaller M.A., Messer S.A., Georgopapadakou N., Martell L.A., Besterman J.M., Diekema D.J. Activity of MGCD290, a Hos2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens. J Clin Microbiol. 2009;47(12):3797-3804. DOI: 10.1128/JCM.00618-09.

32. Pfaller M.A., Rhomberg P.R., Messer S.A., Castanheira M. In vitro activity of a Hos2 deacetylase inhibitor, MGCD290, in combination with echinocandins against echinocandin-resistant Candida species. Diagn Microbiol Infect Dis. 2015;81(4):259-263. DOI: 10.1016/j.diagmicrobio.2014.11.008.

33. Ong V., Hough G., Schlosser M., Bartizal K., Balko-vec J.M., James K.D., Krishnan B. R. Preclinical evaluation of the stability, safety and efficacy of CD101, a novel echinocandin. Antimicrob Agents Chemother. 2016;60(11):6872-6879. DOI: 10.1128/AAC.00701-16.

34. Rollin-Pinheiro R., Singh A., Barreto-Berger E., Del Poeta M. Sphingolipids as targets for treatment of fungal infections. Future Med Chem. 2016;8(12):1469-1484. DOI: 10.4155/fmc-2016-0053.

35. Sigurgeirsson B., Van Rossem K., Malahias S., Raterink K. A phase II, randomized, double-blind, placebo-controlled, parallel group, dose-ranging study to investigate the efficacy and safety of 4 dose regimens of oral albaconazole in patients with distal subungual onychomycosis. J Am Acad Dermatol. 2013;69(3):416-425. DOI: 10.1016/j.jaad.2013.03.021.

36. Walker S.S., Xu Y., Triantafyllou I., Waldman M.F., Mendrick C., Brown N., Mann P., Chau A., Patel R, Bauman N., Norris C., Antonacci B., Gurnani M., Cacciapuoti A., McNicholas P.M., Wainhaus S., Herr R.J., Kuang R., Aslanian R.G., Ting P.C., Black T.A. Discovery of a novel class of orally active antifungal β-1,3-d-glucan synthase inhibitors. Antimicrob Agents Chemother. 2011;55(11):5099-106. DOI: 10.1128/AAC.00432-11.

37. Warn P.A., Sharp A., Morrissey G., Denning D.W. Activity of aminocandin (IP960; HMR3270) compared with amphotericin B, itraconazole, caspofungin and micafungin in neutropenic murine models of disseminated infection caused by itraconazole- susceptible and -resistant strains of Aspergillus fumigatus. Int J Antimicrob Agents. 2010;35(2):146-151. DOI: 10.1016/j.ijantimicag.2009.09.029.

38. Warrilow A.G., Hull C.M., Parker J.E., Garvey E.P., Hoekstra W.J., Moore W.R., Schotzinger R.J., Kelly D.E., Kelly S.L. The clinical candidate VT-1161 is a highly potent inhibitor of Candida albicans CYP51 but fails to bind the human enzyme. Antimicrob Agents Chemother. 2014;58(12):7121-7127. DOI: 10.1128/AAC.03707-14.

39. Watanabe N.A., Miyazaki M., Horii T., Sagane K., Tsukahara K., Hata K. E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob Agents Chemother. 2012;56(2):960-971. DOI: 10.1128/AAC.00731-11

40. Wiederhold N.P., Najvar L.K., Fothergill A.W., McCarthy D. I., Bocanegra R., Olivo M., Kirk-patrick W.R., Everson M.P., Duncanson F.P., Patterson T.F. The investigational agent E1210 is effective in treatment of experimental invasive candidiasis caused by resistant Candida albicans. Antimicrob Agents Chemother. 2015;59(1):690-692. DOI: 10.1128/AAC.03944-14


Review

For citations:


Novikova V.V. Search for new antimycotic agents: main trends and problems. Kursk Scientific and Practical Bulletin "Man and His Health". 2020;(1):75-81. (In Russ.) https://doi.org/10.21626/vestnik/2020-1/09

Views: 521


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5746 (Print)
ISSN 1998-5754 (Online)