Development of a technique for quantitative determination of procyanidins in shoots of Crataegus pinnatifida BUNGE using the Box-Behnken plan
https://doi.org/10.21626/vestnik/2025-2/11
EDN: ZSTBRA
Abstract
The shoots of the hawthorn are a promising raw material of the Far Eastern phytocenoses, deserving the attention of domestic medicine. One of the classes of biologically active substances that ensure the pharmacotherapeutic activity of the plant are procyanidins.
Objective - development of a methodology for quantitative determination of the sum of procyanidins in shoots of hawthorn pistonadrass using the surface response methodology and the Box-Behnken plan.
Materials and methods. The shoots of the hawthorn were harvested in 2024 during the beginning phase of flowering in the natural population in Khabarovsk Territory. For quantitative determination of procyanidins, we used a modified Porter method based on acid hydrolysis of oligomeric procyanidins to anthocyanidins in the presence of a Fe3+ catalyst. The tests were performed on a UV-1700 spectrophotometer, Shimadzu (Japan). Statistical processing of the results was carried out in accordance with the GF XV edition of the OFS.1.1.0013 "Statistical processing of the results of physical, physico-chemical and chemical tests" using Microsoft Office Excel 2010 and Statistica 6.0 software packages.
Results. During the development of the technique, the conditions for the extraction of procyanidins from the shoots of hawthorn were optimized using the surface response methodology and the Box-Benken plan. It has been established that the maximum yield of procyanidins is achieved with the following combination of parameters: the extractant is ethyl alcohol 54%; the ratio of the mass of the raw material to the volume of the extractant is 1:116, the duration of extraction is 45 minutes. The single extraction mode is sufficient to yield a soluble fraction of procyanidins.
Conclusion. A technique has been developed for the quantitative spectrophotometric determination sum of procyanidins in the shoots of hawthorn, which will be used in solving a number of issues related to the standardization of Crataegus pinnatifida .
About the Authors
Galina Ya. MechikovaРоссия
Natalia V. Matyushchenko
Россия
Elena V. Slobodenyuk
Россия
References
1. Hammerstone J.F., Lazarus S.A., Schmitz H.H. Procyanidin content and variation in some commonly consumed foods. J Nutr. 2000;130(8):2086-2092. DOI: 10.1093/jn/130.8.2086S.
2. Valencia-Hernandez L.J., Wong-Paz J.E., Ascacio-Valdés J.A., Chávez-González M.L., Contreras-Esquivel J.C., Aguilar C.N. Procyanidins: from agro-industrial waste to food as bioactive molecules. Foods 2021;10(12):3152. DOI: 10.3390/foods10123152.
3. Zeng Y., Zhao L., Wang K., Renard C.M.G.C., Bourvellec C.L., Hu Z., Liu X. A-type proanthocyanidins: sources, structure, bioactivity, processing, nutrition, and potential applications Compr Rev Food Sci Food Saf. 2024;23(3):e13352. DOI: 10.1111/1541-4337.13352.
4. Rue E.A., Glinski J.A., Glinski V.B., van Breemen R.B. Ion mobility-mass spectrometry for the separation and analysis of procyanidins. J Mass Spectrom. 2020;55(2):e4377. DOI: 10.1002/jms.4377.
5. Rue E.A., Rush M.D., Breemen R.B. Procyanidins: а comprehensive review encompassing structure elucidation via mass spectrometry. Phytochem Rev. 2018;17(1):1-16. DOI: 10.1007/s11101-017-9507-3.
6. Nie F., Liu L., Cui J., Zhao Y., Zhang D., Zhou D., Wu J., Li B., et al. Oligomeric proanthocyanidins: an updated review of their natural sources, synthesis, and potentials. Antioxidants. 2023;12(5):1004. DOI: 10.3390/antiox12051004.
7. Alverina C., Ferni, Wirjatmadi B. Procyanidin and its benefits on aging: a literature review. IJMSCRS. 2022;2(8):762-769. DOI: 10.47191/ijmscrs/v2-i8-09.
8. Chen H., Wang W., Yu S., Wang H., Tian Z., Zhu S. Procyanidins and their therapeutic potential against oral diseases. Molecules. 2022;27(9):2932. DOI: 10.3390/molecules27092932.
9. Dasiman R., Nor N.M., Eshak Z., Mutalip S.S.M., Suwandi N.R., Bidin H. A review of procyanidin: updates on current bioactivities and potential health benefits. Biointerface Research in Applied Chemistry. 2022;12(5):5918-5940. DOI: 10.33263/BRIAC125.59185940.
10. Li S., Xu M., Niu Q., Xu S., Ding Y., Yan Y., Guo S., Li F. Efficacy of procyanidins against in vivo cellular oxidative damage: a systematic review and meta-analysis. PLoS One. 2015;10(10):e0139455. DOI: 10.1371/journal.pone.0139455.
11. Osakabe N., Fushimi T., Fujii Y. Hormetic response to B-type procyanidin ingestion involves stress-related neuromodulation via the gut-brain axis: preclinical and clinical observations. Front Nutr. 2022;(9):969823. DOI: 10.3389/fnut.2022.969823.
12. Ferni Alverina C., Mas’ud A. F. A systematic review of procyanidins: updates on current bioactivities and potential benefits in wound healing. IJMSCRS. 2022;2(8):718-723. DOI: 10.47191/ijmscrs/v2-i8-01.
13. Tian Y., Yang C., Yao Q., Qian L., Liu J., Xie X., Ma W., Nie X., et al. Procyanidin B2 activates PPARg to induce M2 polarization in mouse macrophages. Front Immunol. 2019;10:1895. DOI: 10.3389/fimmu.2019.01895.
14. Qaed E., Almoiliqy M., Al-Hamyari B., Qaid A., Alademy H., Al-Maamari A., Alyafeai E., Geng Z., et al. Procyanidins: a promising anti-diabetic agent with potential benefits on glucose metabolism and diabetes complications. Wound Rep Reg. 2023;31(5):688-699. DOI: 10.1111/wrr.13115.
15. Ruan W., Shen S., Xu Y., Ran N., Zhang H. Mechanistic insights into procyanidins as therapies for Alzheimer’s disease: a review. JFF. 2021;86:104683. DOI: 10.1016/j.jff.2021.104683.
16. Lee Y. Cancer Chemopreventive Potential of Procyanidin. Toxicol Res. 2017;33(4):273-282. DOI: 10.5487/TR.2017.33.4.273.
17. Lei Y., Deng X., Zhang Z., Chen J. Natural product procyanidin B1 as an antitumor drug for effective therapy of colon cancer. Exp Ther Med. 2023;26(5):506. DOI: 10.3892/etm.2023.12205.
18. Mao J.T., Lu Q-Y., Xue B., Neis P., Zamora F.D., Lundmark L., Qualls C., Massie L. A pilot study of a grape seed procyanidin extract for lung cancer chemoprevention. Cancer Prev Res (Phila). 2019;12(8):557-566. DOI: 10.1158/1940-6207.
19. Xue B., Lu Q.-.Y, Massie L., Qualls C., Mao J.T. Grape seed procyanidin extract against lung cancer: the role of microrna-106b, bioavailability, and bioactivity. Oncotarget. 2018;9(21):15579-15590. DOI: 10.18632/oncotarget.24528.
20. Hellenbrand N., Sendker J., Lechtenberg M., Petereit F., Hensel A. Isolation and quantification of oligomeric and polymeric procyanidins in leaves and flowers of Hawthorn (Crataegus spp.). Fitoterapia. 2015;104:14-22. DOI: 10.1016/j.fitote.2015.04.010.
21. Sendker J., Petereit F., Lautenschläger M., Hellenbrand N., Hensel A. Phenylpropanoid-substituted procyanidins and tentatively identified procyanidin glycosides from Hawthorn (Crataegus spp.). Planta Med. 2013;79(1):45-51. DOI: 10.1055/s-0032-1327926.
22. Svedstroёm U., Vuorela H., Kostiainen R., Tuominen J., Kokkonen J., Rauha J.P., Laakso I., Hiltunen R. Isolation and identification of oligomeric procyanidins from Crataegus leaves and flowers. Phytochemistry. 2002;60(8):821-825.
23. Kumar D., Arya V., Bhat Z.A., Khan N.A., Prasad D.N. The genus Crataegus: chemical and pharmacological perspectives. Rev Bras Farmacogn. 2012;22(5): 1187-1200. DOI: 10.1590/S0102-695Х2012005000094.
24. Cherepanov S.K. Vascular plants of Russia and neighbouring states (within the former USSR). Saint Petersburg: Mir i sem'ya, 1995. 992 р. (in Russ.). END: ZBKYNV.
25. Han X., Zhou Q., Gao Z., Xu G.B., Chen H., Chitrakar B., Sun Y., Zhao W., et al. Characterization of procyanidin extracts from hawthorn (Crataegus pinnatifida) in human colorectal adenocarcinoma cell line Caco-2, simulated digestion, and fermentation identified unique and novel prebiotic properties. Food Res Int. 2023;165:112393. DOI: 10.1016/J.FOODRES.2022.112393.
26. Li R., Luan F., Zhao Y., Wu M., Lu Y., Tao C., Zhu L., Zhang C., et al. Crataegus pinnatifida: A botanical, ethnopharmacological, phytochemical, and pharmacological overview. J Ethnopharmacol. 2023;301(16): 115819. DOI: 10.1016/j.jep.2022.115819.
27. Porter L.J., Hrstich L.N., Chan B.G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry. 1986;25(1):223-230. DOI: 10.1016/s0031-9422(00)94533-3.
28. Ferreira S.L.C., Bruns R.E., Ferreira H.S., Matos G.D., David J.M., Brandão G.C., Da Silva G.C.P, Portugal L.A., et al. Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta. 2007;597(2):179-186. DOI: 10.1016/J.ACA.2007.07.011.
Review
For citations:
Mechikova G.Ya., Matyushchenko N.V., Slobodenyuk E.V. Development of a technique for quantitative determination of procyanidins in shoots of Crataegus pinnatifida BUNGE using the Box-Behnken plan. Humans and their health. 2025;28(3):85-93. (In Russ.) https://doi.org/10.21626/vestnik/2025-2/11. EDN: ZSTBRA
JATS XML























