Morphometric characteristics of different types of splenic venous vasculature’s structural components
https://doi.org/10.21626/vestnik/2024-1/04
EDN: MKLSCV
Abstract
Objective: to establish morphometric characteristics of different types of splenic venous vasculature’s structural components - bi-units (BUs) in males and females, of the 1st and 2nd periods of adulthood. Materials and methods. The study is based on the results of a morphometric study of corrosion casts of the splenic venous system of 64 people (32 men, 32 women; 32 first period of adulthood, 32 second period of adulthood) who died of sudden death and accidental causes between the ages of 21 and 60. The diameters (D) and lengths (L) of the venous segments forming the BU were measured. The splenic venous vasculature was represented as a system consisting of four types of BU: 1 - complete asymmetry, the values of the internal diameters of the proximal segment (D), the distal segments with larger diameter (dmax) and the distal segment with smaller diameter (dmin) are not equal- D≠dmax≠dmin; 2 - lateral asymmetry, D=dmax and dmax≠dmin; 3 - unilateral symmetry - D≠dmax≠dmin and dmax=dmin; 4 - complete symmetry, D=dmax=dmin. Results. All four types of BUs are present in the composition of splenic venous vasculature; the relative number, of the total number of BUs of splenic venous vasculature type 1 is 55.2%; type 2 - 4.7%, type 3 - 38.0%, type 4 - 2.1%; the presence of a reliable relationship between the relative number of BUs of different types, sex and age group; the sizes of all four types of BUs were determined; the largest size is BU of type 1, and the smallest - BU of type 4; the most symmetrical bi-unites are of types 3 and 4, the most asymmetrical - of types 1 and 2; the relative number of BU of type 1 decreases, BU of type 3 increases, and types 2 and 4 practically do not change in the direction from proximal to distal parts of the vasculature. Conclusion. The results obtained can serve as a foundation for the creation of a morphometric reference standard of splenic venous vasculature and should be taken into account in its numerical modelling.
About the Authors
Ali S. DadashevRussian Federation
Ilia S. Miltykh
Russian Federation
Oleg K. Zenin
Russian Federation
Edgar S. Kafarov
Russian Federation
References
1. Amosov V.I., Zolotnitskaia V.P. Blood circulation in the lungs: radiologic methods of diagnosing microcirculation changes in the small circle of circulation. Regionarnoe krovoobrashchenie i mikrotsirkulyatsiya. 2019;18(1):5-16 (in Russ.). DOI: 10.24884/1682-6655-2019-18-1-5-16. EDN HWDAST.
2. Zenin O.K., Kafarov E.S., Kosnikov Yu.N., Baisultanov I.H., Dmitriev A.V., Bataev H.M. Analytical and three-dimensional (3D) anatomy of the human renal vascular bed Kadyrov Chechen State University Publishing; 2021 (in Russ.)
3. Kopylova V.S., Boronovskiy S.E., Nartsissov Y.R. Fundamental principles of vascular network topology. Biochem Soc Trans. 2017;45(3):839-844. DOI: 10.1042/BST20160409.
4. Qi Y., Roper M. Control of low flow regions in the cortical vasculature determines optimal arterio-venous ratios. Proc Natl Acad Sci U S A. 2021;118(34):e2021840118. DOI: 10.1073/pnas.2021840118.
5. Fleischer S., Tavakol D.N., Vunjak-Novakovic G. From Arteries to Capillaries: Approaches to Engineering Human Vasculature. Adv Funct Mater. 2020;30(37):1910811. DOI: 10.1002/adfm.201910811.
6. Leznina O.Yu., Korobkeev A.A., Mingalieva O.N., Baranova N.V. Anatomical peculiarities of the design of the coronary bed of the heart. Morphologia. 2019;155(2):174-175 (in Russ.). EDN: QUZZNA.
7. Zenin O.K., Dmitriev A.V., Dovgyallo Yu.V., Gavryushin M.A. Morphometric characteristic of the human brain arterial bed in accordance with the segmentary model of its structure. Izvestiya vysshikh uchebnykh zavedeniy Povolzhskiy region Meditsinskie nauki. 2020;53(1):76-82 (in Russ.). DOI: 10.21685/2072-3032-2020-1-9. EDN: AIVNLV.
8. Zenin O.K., Miltykh I.S., Dmitriev A.V., Iurchenko O.O. Morphometric analysis of C.D. Murray`s law appliance for numerical modeling of vascular dichotomies of kidneys. Siberian Journal of Life Science and Agriculture. 2021;13(3):170-192 (in Russ.). DOI: 10.12731/2658-6649-2021-13-3-170-192. EDN: FZZROU.
9. El-Matbouly M., Jabbour G., El-Menyar A., Peralta R., Abdelrahman H., Zarour A., Al-Hassani A., Al-Thani H. Blunt splenic trauma: Assessment, management and outcomes. Surgeon. 2016;14(1):52-58. DOI: 10.1016/j.surge.2015.08.001.
10. Spittle A., Britcliffe A., Hamilton M.J. Splenic trauma in the Northern Territory; the impact of an interventional radiology service on splenic trauma management and outcomes. Heliyon. 2023;9(6):e16993. DOI: 10.1016/j.heliyon.2023.e16993.
11. Kafarov E.S., Miltykh I., Dmitriev A.V., Zenin O.K. Anatomical variability of kidney arterial vasculature based on zonal and segmental topography. Heliyon. 2023;9(4):e15315. DOI:10.1016/j.heliyon.2023.e15315.
12. Jorstad A., Nigro B., Cali C., Wawrzyniak M., Fua P., Knott G. NeuroMorph: a toolset for the morphometric analysis and visualization of 3D models derived from electron microscopy image stacks. Neuroinformatics. 2015;13(1):83-92. DOI: 10.1007/s12021-014-9242-5.
13. Avtandilov G.G. Fundamentals of Quantitative Pathological Anatomy. Meditcina; 2002. (in Russ.)
14. R Core Team. R: A Language and Environment for Statistical Computing.; 2021. https://www.R-project.org/
15. Dmitriev A., Dovgiallo Yu., Zenin O. Conceptional models of the tree-shape arterial bed. Scripta scientifica medica. 2008;40:23.
16. Wymer D.T., Patel K.P., Burke W.F., Bhatia V.K. Phase-Contrast MRI: Physics, Techniques, and Clinical Applications. RadioGraphics. 2020;40(1):122-140. DOI: 10.1148/rg.2020190039.
17. Gao J., Wang Y., Ding Q.Comparison of the clinical value of transcranial Doppler ultrasound and computed tomography angiography for diagnosing ischemic cerebrovascular disease. J Int Med Res. 2022;50(6):03000605211047718. DOI: 10.1177/03000605211047718.
18. Tang H., Hu N., Yuan Y., Xia C., Liu X., Zuo P., Stalder A.F., Schmidt M., Zhou X., Song B., Sun J. Accelerated Time-of-Flight Magnetic Resonance Angiography with Sparse Undersampling and Iterative Reconstruction for the Evaluation of Intracranial Arteries. Korean J Radiol. 2019;20(2):265-274. DOI: 10.3348/kjr.2017.0634.
19. Vigneshwaran V., Sands G.B., LeGrice I.J., Smaill B.H., Smith N.P. Reconstruction of coronary circulation networks: A review of methods. Microcirculation. 2019;26(5):e12542. DOI: 10.1111/micc.12542.
20. Roux W. Ueber die verzweigungen der blutgefsse. Eine morphologische studie. Z Naturwiss. 1878;12:205-266.
21. Murray C.D. The physiological principle of minimum work applied to the angle of branching of arteries. J Gen Physiol. 1926;9(6):835-841. DOI: 10.1085/jgp.9.6.835.
22. Uylings H.B. Optimization of diameters and bifurcation angles in lung and vascular tree structures. Bull Math Biol. 1977;39(5):509-520. DOI: 10.1007/BF02461198.
23. Zamir M. On fractal properties of arterial trees. J Theor Biol. 1999;197(4):517-526. DOI: 10.1006/jtbi.1998.0892.
24. Rosen R. Optimality Principles in Biology. Springer US; 1967. DOI: 10.1007/978-1-4899-6419-9.
25. Keelan J., Chung E.M.L., Hague J.P. Development of a globally optimised model of the cerebral arteries. Phys Med Biol. 2019;64(12):125021. DOI: 10.1088/1361-6560/ab2479.
Review
For citations:
Dadashev A.S., Miltykh I.S., Zenin O.K., Kafarov E.S. Morphometric characteristics of different types of splenic venous vasculature’s structural components. Humans and their health. 2024;27(1):30-38. (In Russ.) https://doi.org/10.21626/vestnik/2024-1/04. EDN: MKLSCV