Preview

Humans and their health

Advanced search

Efficiency of monovariants of antihypertensive therapy in the correction of Bevacizumab-induced arterial hypertension in Wistar rats

https://doi.org/10.21626/vestnik/2025-2/07

EDN: MSACMO

Abstract

Objective - to determine the efficiency of correction of hemodynamic parameters in bevacizumab-induced arterial hypertension in laboratory Wistar rats with monovariant administration of antihypertensive drugs.

Materials and methods. Modeling of bevacizumab-induced arterial hypertension in Wistar rats was carried out by intraperitoneal administration of a monoclonal antibody drug. Hemodynamic parameters were recorded in male Wistar rats using the hardware and software complex for electrophysiological studies MP150 manufactured by Biopac Systems, Inc., USA, with data processing converted by the AcqKnowledge 4.4 program. 6 groups of rats (age - 8 months, weight - 400±40 g), 10 male rats in each group. The control group received Bevacizumab at a dose of 15 mg/kg per week for a 4-week period and 5 groups in addition to monotherapy with antihypertensive drugs after achieving stable bevacizumab-induced arterial hypertension: doxazosin, telmisartan, amlodipine, lisinopril, moxonidine at doses of 0.08; 3.1; 0.4; 0.8; 0.016 mg/kg/day for 3 weeks, respectively.

Results. Correction of bevacizumab-induced hypertension using monovariants of antihypertensive drugs showed efficacy by the 20th day of their intragastric administration, while blood pressure remained elevated in control animals, and in groups where hypertension was corrected with monotherapy, hemodynamic parameters did not reach the values recorded in Wistar rats before intraperitoneal administration of bevacizumab.

Conclusion. Intraperitoneal administration of bevacizumab to Wistar rats at a total dose of 60 mg/kg leads to a persistent increase in arterial pressure. Monovariant therapy with antihypertensive drugs in bevacizumab-induced arterial hypertension is irrational, in this regard, the possibility of using combination therapy with antihypertensive drugs should be considered for the purpose of effective correction of arterial hypertension induced by the administration of a monoclonal antibody drug.

References

1. Stacker S.A., Achen M.G. The VEGF signaling pathway in cancer: the road ahead. Chin J Cancer. 2013;32(6):297-302. DOI:10.5732/cjc.012.10319.

2. Papetti M., Herman I.M. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 2002;282(5):C947-C970. DOI: 10.1152/ajpcell.00389.2001

3. Khlyamov S.V., Mal G.S., Artyushkova E.B., Gladchenko M.P. Chemotherapy of oncological diseases and the risk of developing a cardiotoxic profile using the example of the human recombined monoclonal antibody bevacizumab. Innova. 2023;1(30):52-59 (in Russ.). EDN: MICJXL.

4. Regino C.A., Cardona-Vélez J., Bello Simanca J.D., Miranda Arboleda A.F., Gamboa Arroyave J.G., Jaimes F. Cardio-oncology Clinical Assessment and Screening in Patients Undergoing High Toxicity Chemotherapy: A Retrospective Cohort Study. Cureus. 2022;14(12):e32513. DOI: 10.7759/cureus.32513.

5. Newton H.B. Bevacizumab: Review of Development, Pharmacology, and Application to Brain Tumors. Clinical Medicine Therapeutics. 2009;1:1577-1597. DOI: 10.4137/CMT.S2042.

6. Ellis L.M. Mechanisms of action of bevacizumab as a component of therapy for metastatic colorectal cancer. Semin Oncol. 2006;33(5 Suppl 10):S1-S7. DOI: 10.1053/j.seminoncol.2006.08.002.

7. Kazazi-Hyseni F., Beijnen J.H., Schellens J.H. Bevacizumab. Oncologist. 2010;15(8):819-825. DOI: 10.1634/theoncologist.2009-0317.

8. Mao C.L., Seow K.M., Chen K.H. The Utilization of Bevacizumab in Patients with Advanced Ovarian Cancer: A Systematic Review of the Mechanisms and Effects.Int J Mol Sci. 2022;23(13):6911. DOI: 10.3390/ijms23136911.

9. Ferlay J., Colombet M., Soerjomataram I., Parkin D.M., Piñeros M., Znaor A., Bray F. Cancer statistics for the year 2020: An overview.Int J Cancer. DOI: 10.1002/ijc.33588.

10. Chhikara B.S., Parang K. Global Cancer Statistics 2022: the trends projection analysis. Chem Biol Lett. 2023;10(1):451.

11. Matthews H.K., Bertoli C., de Bruin R.A.M. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022;23(1):74-88. DOI: 10.1038/s41580-021-00404-3.

12. Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31-46. DOI: 10.1158/2159-8290.CD-21-1059.

13. Maitland M.L., Bakris G.L., Black H.R., Chen H.X., Durand J.B., Elliott W.J., Ivy S.P., Leier C.V., et al. Initial assessment, surveillance, and management of blood pressure in patients receiving vascular endothelial growth factor signaling pathway inhibitors. J Natl Cancer Inst. 2010;102(9):596-604. DOI: 10.1093/jnci/djq091.

14. Lyon A.R., López-Fernández T., Couch L.S., Asteggiano R., Aznar M.C., Bergler-Klein J., Boriani G., Cardinale D., et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43(41):4229-4361. DOI: 10.1093/eurheartj/ehac244.

15. Chazova I.E., Ageev F.T., Aksenova A.V., Vicenya M.V., Gilyarov M.Yu., Martynyuk T.V., Panchenko E.P., Poltavskaya M.G., et al. Eurasian clinical guidelines for the diagnosis, prevention and treatment of cardiovascular complications during antitumor therapy (2022). Eurasian Cardiological Journal. 2022;(1):6-79 (in Russ.). DOI: 10.38109/2225-1685-2022-1-6-79. EDN: SIVDQT.

16. Wasserstrum Y., Kornowski R., Raanani P., Leader A., Pasvolsky O., Iakobishvili Z. Hypertension in cancer patients treated with anti-angiogenic based regimens. Cardiooncology. 2015;1(1):6. DOI: 10.1186/s40959-015-0009-4.

17. Gladchenko M.P., Mal G.S., Artyushkova E.B., Khlyamov S.V., Eliseeva R.S. Efficacy of unfixed combinations of antihypertensive therapy in the treatment of bevacizumab-induced arterial hypertension in Wistar rats. Modern problems of science and education. 2023;(4):132 (in Russ.). DOI: 10.17513/spno.32918. EDN: DWEPAZ.

18. Steingart R.M., Yadav N., Manrique C., Carver J.R., Liu J. Cancer survivorship: cardiotoxic therapy in the adult cancer patient; cardiac outcomes with recommendations for patient management. Semin Oncol. 2013;40(6):690-708. DOI: 10.1053/j.seminoncol.2013.09.010

19. Copur M.S., Obermiller A. An algorithm for the management of hypertension in the setting of vascular endothelial growth factor signaling inhibition. Clin Colorectal Cancer. 2011;10(3):151-156. DOI: 10.1016/j.clcc.2011.03.021.

20. McKay R.R., Rodriguez G.E., Lin X., Kaymakcalan M.D., Hamnvik O.P., Sabbisetti V.S., Bhatt R.S., Simantov R., Choueiri T.K. Angiotensin system inhibitors and survival outcomes in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2015;21(11):2471-2479. DOI:10.1158/1078-0432.CCR-14-2332.

21. Small H.Y., Montezano A.C., Rios F.J., Savoia C., Touyz R.M. Hypertension due to antiangiogenic cancer therapy with vascular endothelial growth factor inhibitors: understanding and managing a new syndrome. Can J Cardiol. 2014;30(5):534-543. DOI: 10.1016/j.cjca.2014.02.011.

22. Steingart R.M., Bakris G.L., Chen H.X., Chen M.H., Force T., Ivy S.P., Leier C.V., Liu G., et al. Management of cardiac toxicity in patients receiving vascular endothelial growth factor signaling pathway inhibitors. Am Heart J. 2012;163(2):156-163. DOI: 10.1016/j.ahj.2011.10.018.

23. Tkachenko P.V., Lipatov V.A., Privalova I.L., Severinov D.A., Khmaro N.I. Ethical and legal aspects of experimental practice. Innova. 2016;1(2):29-35 (in Russ.). DOI: 10.21626/innova/2016.1/08. EDN: XKQCYT.

24. Lipatov V.A., Kryukov A.A., Severinov D.A., Saakyan A.R. Ethical and legal aspects of conducting experimental biomedical research in vivo. Part I.Russian Medical and Biological Bulletin named after Academician I.P. Pavlov. 2019;27(1):80-92 (in Russ.). DOI: 10.23888/PAVLOVJ201927180-92. EDN: KYDUUL

25. Lipatov V.A., Kryukov A.A., Severinov D.A., Saakyan A.R. Ethical and legal aspects of conducting experimental biomedical research in vivo. Part II.Russian Medical and Biological Bulletin named after Academician I.P. Pavlov. 2019;27(2):245-257 (in Russ.). DOI: 10.23888/PAVLOVJ2019272245-257. EDN: GIEJQL.

26. Balci M.A., Özyiğit M. Özgür, İpek V., Kafa İlker M., Kurt E. Investigation of the Pathogenesis and Treatment Efficiency of Bevacizumab-Induced Hypertension in the Rat Model. Med Lab Tech J. 2019;5(1): 16-23.

27. Shekunova E.V., Kovaleva M.A., Makarova M.N., Makarov V.G. Selecting a drug dose for preclinical studies: interspecies dose transfer. Bulletin of the Scientific Center for Expertise of Medical Products. 2020;10(1):19-28 (in Russ.). DOI: 10.30895/1991-2919-2020-10-1-19-28. EDN: KVZBBV.

28. Khlyamov S.V. Secondary arterial hypertension as cardiotoxicity in the administration of antiangiogenic targeted therapy using the example of the monoclonal antibody bevacizumab. Natural Resources of the Earth and Environmental Protection. 2023;4(1):46-53 (in Russ.). EDN: UHTJLD.


Review

For citations:


Khlyamov S.V., Mal G.S., Artyushkova E.B., Gladchenko M.P. Efficiency of monovariants of antihypertensive therapy in the correction of Bevacizumab-induced arterial hypertension in Wistar rats. Humans and their health. 2025;28(2):53-63. (In Russ.) https://doi.org/10.21626/vestnik/2025-2/07. EDN: MSACMO

Views: 55


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5746 (Print)
ISSN 1998-5754 (Online)