Effect of transcranial electrical stimulation on adiponectin concentration in animals with a model of metabolic syndrome and sedentary lifestyle
https://doi.org/10.21626/vestnik/2025-2/06
EDN: JVIKOG
Abstract
Objective - to examine the impact of transcranial electrical stimulation on the dynamics of adiponectin concentration in blood in a rat model of metabolic syndrome and sedentary lifestyle.
Materials and methods. In the present study, experimental animals (n=180) comprised outbred male Wistar rats (age 10-12 weeks). These rats were divided into three groups. The control group (n=60) received a standard diet and were housed in cages with a seating density of at least 350 cm² per rat. The comparison group (n = 60) and the transcranial electrical stimulation group (n=60) were provided a high-fat and high-fructose diet, and cage density did not exceed 270 cm² per rat. In the transcranial electrical stimulation group, this procedure was performed daily for 30 minutes (current 0,6 mA). The adiponectin concentration in the blood of the animals was evaluated at 30, 60, and 90 days into the study.
Results. On the thirtieth day of the study, the estimated concentration was not statistically significantly different (p=0,5) between the groups. However, by day 60, the concentration in the transcranial electrical stimulation group exhibited a significant increase of 38.2% over the comparison group (p=0,008; effect size: ε2=0.2 (95% CI 0,04-0,5)). At the 90-day mark, the adiponectin concentration remained non-significantly different (p=0,5) between the groups.
Conclusion. This finding suggests that transcranial electrical stimulation may have an impact on adiponectin concentration in animals model of the discussed pathology. To provide a more comprehensive interpretation of the observed results, it is essential to consider the impact of transcranial electrostimulation on various parameters, including but not limited to: carbohydrate and lipid metabolism, the concentration of other adipokines, parainflammation, activation of anti-inflammatory systems (e.g. opioidergic) within the model of the aforementioned pathology.
About the Authors
Sergey A. ZaninRussian Federation
Pavel P. Polyakov
Russian Federation
Oleg V. Tsymbalov
Russian Federation
References
1. Bondareva E.A., Troshina E.A. Obesity. Reasons, features and prospects. Obesity and metabolism. 2024;21(2):174-187 (in Russ.). DOI: 10.14341/omet13055. EDN: BRPHRR.
2. Murkamilov I., Ymankulov D., Sabirova A., Raimzhanov Z., Sabirov I., Khakimov Sh., Yusupova Z., Yusupova T., et al. Obesity in the 21st Century. Prevalence, Phenotypes, Course Variants and Consequences. Bulletin of Science and Practice. 2024;10(4):268-303 (in Russ.). DOI: 10.33619/2414-2948/101/34. EDN VIYUAE.
3. Evans M., de Courcy J., de Laguiche E., Faurby M., Haase C.L., Matthiessen K.S., Moore A., Pearson-Stuttard J. Obesity-related complications, healthcare resource use and weight loss strategies in six European countries: the RESOURCE survey.Int J Obes (Lond). 2023;47(8):750-757. DOI: 10.1038/s41366-023-01325-1. EDN: EGOLKV.
4. Antonova K.V., Tanashyan M.M., Raskurazhev A.A., Spryshkov N.E., Panina A.A., Lagoda O.V., Ametov A.S., Troshina E.A. Obesity and the nervous system. Obesity and metabolism. 2024;21(1):68-78 (in Russ.). DOI: 10.14341/omet13019. EDN: ZLNYDR.
5. Troshina E.A., Terekhov Р.A. Hypogonadism and visceral obesity in men are full-fledged components of the metabolic syndrome. Obesity and metabolism. 2023;20(1):84-91 (in Russ.). DOI: 10.14341/omet12980. EDN: QSZMAZ.
6. Bulatova I.A., Shevlyukova T.P., Gulyaeva I.L., Sobol A.A., Sheludko V.S. The diagnostic value of leptin for the detection of liver steatosis in postmenopausal obese women. Medical Council. 2024;(15):210-214 (in Russ.). DOI: 10.21518/ms2024-353. EDN UARKAM.
7. Podoprigora M.V., Zinchuk V.V., Al-Jebur Jaafar Sh.O. Oxygen transport function of blood in individuals with type 2 diabetes mellitus and asprosin content. Clinical pathophysiology. 2024;30(4):90-93 (in Russ.). EDN: WPMQYN.
8. Zinchuk V.V., Al-Jebur J.S.O., Glutkina N.V. Oxygen-binding properties of blood in insulin resistance with different asprosin content. Biomeditsinskaya Khimiya. 2023;69(2):133-139 (in Russ.). DOI: 10.18097/PBMC20236902133. EDN JQMIPO.
9. Mustafina S.V., Vinter D.A., Alferova V.I. Influence of obesity on the formation and development of cancer. Obesity and metabolism. 2024;21(2):205-214 (in Russ.). DOI: 10.14341/omet13025. EDN: HGLCXT.
10. Würfel M., Blüher M., Stumvoll M., Ebert T., Kovacs P., Tönjes A., Breitfeld J. Adipokines as Clinically Relevant Therapeutic Targets in Obesity. Biomedicines. 2023;11(5):1427. DOI: 10.3390/biomedicines11051427. EDN: HGLCXT.
11. Zinchuk V.V., Al-Jebur J.S.O. Oxygen-Dependent Aspects of Asprosin Action. Journal of Evolutionary Biochemistry and Physiology. 2024;60(2):818-828. DOI: 10.1134/S0022093024020297. EDN: YFVHWK.
12. Han Y., Sun Q., Chen W., Gao Y., Ye J., Chen Y., Wang T., Gao L., et al. New advances of adiponectin in regulating obesity and related metabolic syndromes. J Pharm Anal. 2024;14(5):100913. DOI: 10.1016/j.jpha.2023.12.003. EDN: CIGCNR.
13. Begum M., Choubey M., Tirumalasetty M.B., Arbee S., Mohib M., Wahiduzzaman M., Mamun M.A., Uddin M.B., et al. Adiponectin: A Promising Target for the Treatment of Diabetes and Its Complications. Life (Basel). 2023;13(11):2213. DOI: 10.3390/life13112213. EDN: HHOOMA.
14. Zanin S.A., Chabanets E.A., Kade A.Kh., Polyakov P.P., Trofimenko A.I., Zanina E.S. Adiponectin as the main representative of adipokines: role in pathology, possibilities of TES-therapy. Medical news of the North Caucasus. 2022;17(4):455-461 (in Russ.). DOI: 10.14300/mnnc.2022.17110. EDN: XRZZWM.
15. Ziomber-Lisiak A., Talaga-Ćwiertnia K., Sroka-Oleksiak A., Surówka A.D., Juszczak K., Szczerbowska-Boruchowska M. Repetitive transcranial direct current stimulation modulates the brain-gut-microbiome axis in obese rodents. Pharmacol Rep. 2022;74(5):871-889. DOI: 10.1007/s43440-022-00401-z. EDN: YOKMWP.
16. Alipoor A., Mohammadi R. Does Electrical Brain Stimulation with Transcranial Direct Current Stimulation (TDCS) Technique Reduce Blood Sugar in Patients with Type 2 Diabetes? Iran J Public Health. 2023;52(12):2701-2702. DOI: 10.18502/ijph.v52i12.14332. EDN: WWGMNR.
17. Bolotova N.V., Filina N.Yu., Cherednikova K.A., Logacheva O.A., Timofeeva S.V., Nikolaeva N.V., Novikova E.P. Application of modern methods for activation of brain functions in obese patients (literature review). Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;101(6):54-61 (in Russ.). DOI: 10.17116/kurort202410106154. EDN: GLKSCJ.
18. Malygin A.V., Hadarcev A.A., Tokarev A.R., Naumova E.M., Valentinov B.G., Trusov S.V., Lebedev V.P. Transcranial Electrostimulation. Moscow: Indrik, 2021. 224 p. (in Russ.). EDN: HJRYPK.
19. Belyaeva V.A., Datieva L.R., Gazzaeva N.A., Ivanov D.V. The increase in sports performance through combined transcranial electrostimulation and serotonin supplements with freestyle wrestlers. Resort medicine. 2024;(4):77-83 (in Russ.). DOI: 10.24412/2304-0343-2024_4_77. EDN: RADUDM.
20. Khabarov S.V., Khadartseva K.A, Panshina M.V. The effectiveness of the transcranial electrical stimulation method in obstetrics and gynecology. Problems of Balneology, Physiotherapy and Exercise Therapy. 2021;98(4):62-69 (in Russ.). DOI: 10.17116/kurort20219804162. EDN: TTFIHQ.
21. Bolotova N.V., Filina N.Yu., Kurdiyan M.S., Kompaniets O.V., Garifulina L.M., Meshcheryakova I.Yu. Using transcranial magnetic therapy in combination with electrostimulation for correcting neuroendocrine-immune disorders in obese boys.Russian Open Medical Journal. 2022;11(1):111. DOI: 10.17116/kurort20219804162. EDN: TCSTLJ.
22. Baryl'nik Iu.B., Bolotova N.V., Levit S.V., Raĭgorodskiĭ Iu.M., Cherevashchenko L.A., Cherevashchenko I.A. S.S. Korsakov Journal of Neurology and Psychiatry. 2012;112(9):52-56 (in Russ.). EDN: PIVGOP.
23. Marchenko V.A., Kochergin N.G., Dodina M.I. Transcranial electrical stimulation (TES) in patients with atopic dermatitis.Russian Journal of Skin and Venereal Diseases. 2024;27(2): 209-217 (in Russ.). DOI: 10.17816/dv625756. EDN: VJDTAV.
24. Khadartsev A.A., Tokarev A.R., Tokareva S.V., Hromushin V.A. The role of transcranial electrostimulation in the treatment of psychosomatic disorders in industrial workers. Problems of Balneology, Physiotherapy and Exercise Therapy. 2019;96(2):39-44 (in Russ.). DOI: 10.17116/kurort20199602139. EDN: NKTXUV.
25. Chabanets E.A., Kade A.Kh., Tsymbalov O.V., Trofimenko A.L., Kim G.G. Effects of transcranial electrical therapy on systemic inflammation in a high-fat fructose diet. Vestnik SurGU. Meditsina. 2023;16(2):87-94 (in Russ.). DOI: 10.35266/2304-9448-2023-2-87-94. EDN: OIMOEX.
26. Chabanets E.A., Kade A.Kh., Gayvoronskaya T.V., Kim G.G., Trofimenko A.I. The effect of transcranial electrotherapy on the state of carbohydrate metabolism on the background of a high-fat fructose diet. Modern problems of science and education.2023;(3):54 (in Russ.). DOI: 10.17513/spno.32592. EDN YKOBJE.
27. Chabanets E.A., Kade A.Kh., Trofimenko A.I., Kim G.G., Krutova V.A. Antiatherogenic Potential of Transcranial Electrical Stimulation in a High-Fructose/High-Fat Diet: Experimental Randomized Trial. Kuban Scientific Medical Bulletin. 2023;30(3):65-75 (in Russ.). DOI: 10.25207/1608-6228-2023-30-3-65-75. EDN: XSNKSF.
28. Xu S., Chen M., Feng T., Zhan L., Zhou L., Yu G. Use ggbreak to Effectively Utilize Plotting Space to Deal With Large Datasets and Outliers. Front. Genet. 2021;12:774846. DOI: 10.3389/fgene.2021.774846. EDN: CYLEQM.
29. Hothorn T., Hornik K., van de Wiel M.A., Zeileis A. A Lego system for conditional inference. The American Statistician. 2006;60(3):257-263. DOI: 10.1198/000313006X118430.
30. Surowka A.D., Ziomber A., Czyzycki M., Migliori A., Kasper K., Szczerbowska-Boruchowska M. Molecular and elemental effects underlying the biochemical action of transcranial direct current stimulation (tDCS) in appetite control. Spectrochim Acta A Mol Biomol Spectrosc. 2018;195:199-209. DOI: 10.1016/j.saa.2018.01.061. EDN: YGAPQD.
31. Wardzinski E.K., Friedrichsen L., Dannenberger S., Kistenmacher A., Melchert U.H., Jauch-Chara K., Oltmanns K.M. Double transcranial direct current stimulation of the brain increases cerebral energy levels and systemic glucose tolerance in men. J Neuroendocrinol. 2019;31(4):e12688. DOI: 10.1111/jne.12688.
32. Anderson E.C., Cantelon J.A., Holmes A., Giles G.E., Brunyé T.T., Kanarek R. Transcranial direct current stimulation (tDCS) to dorsolateral prefrontal cortex influences perceived pleasantness of food. Heliyon. 2023;9(2):e13275. DOI: 10.1016/j.heliyon.2023.e13275. EDN: VEKVMQ.
33. Gouveia F.V., Silk E., Davidson B., Pople C.B., Abrahao A., Hamilton J., Ibrahim G.M., Müller D.J., Giacobbe P., Lipsman N., Hamani C. A systematic review on neuromodulation therapies for reducing body weight in patients with obesity. Obes Rev. 2021;22(10):e13309. DOI: 10.1111/obr.13309. EDN: XPBWKO.
34. Bolotova N.V., Belousova M.S., Cherednikova K.A., Filina N.Y., Polyakov V.K., Averyanov A.P. A comprehensive approach to the treatment of obesity in adolescent children. Therapist’s bulletin. 2023;3(58):34-58 (in Russ.). EDN: ZNJWHW.
Review
For citations:
Zanin S.A., Polyakov P.P., Tsymbalov O.V. Effect of transcranial electrical stimulation on adiponectin concentration in animals with a model of metabolic syndrome and sedentary lifestyle. Humans and their health. 2025;28(2):45-62. (In Russ.) https://doi.org/10.21626/vestnik/2025-2/06. EDN: JVIKOG