Assessment of antibiotic resistance and antibiotic sensitivity of infectious agents in patients of a multidisciplinary somatic hospital after the COVID-19 pandemic
https://doi.org/10.21626/vestnik/2025-2/05
EDN: JSEFEW
Abstract
Objective - to determine the microbial landscape and evaluate the sensitivity and resistance of isolated microorganisms to antibacterial drugs in patients of a multidisciplinary somatic hospital.
Materials and methods. The paper presents the results of 1203 crops of biological material (bronchial aspirate, sputum, pleural fluid and bronchial flushes) in patients of the somatic departments of the Kursk Regional Multidisciplinary Clinical Hospital for 2022-2023, as well as the results of a study of crops for antibiotic sensitivity and antibiotic resistance to antimicrobials.
Results. The largest number of positive microbiological examination results were obtained in sputum (88.0%) and bronchial aspirate (80.1%), while there were significantly fewer positive results in pleural fluid and bronchial flushes - 42.6% and 47.8%, respectively. The leading representatives in the biological materials of patients in somatic departments were Streptococcus pyogenes (18%), Klebsiella pneumoniae (15.6%), Acinetobacter baumannii (14.9%), Pseudomonas aeruginosa (11.1%), Candida albicans (6.7%), while Staphylococcus aureus was observed only in 4.2% of samples. Streptococcus pyogenes, detected in patients with somatic departments, was sensitive to chloramphenicol in 90% and clindamycin in 89% and resistant to erythromycin in 53% and azithromycin in 45%, while in 71% of cases intermediate, i.e. partial, sensitivity (resistance) to levofloxacin was noted.
Conclusion. The results obtained allow the attending physician to choose the most effective and consistent with approved clinical recommendations regimens for empirical antimicrobial pharmacotherapy in patients with somatic departments of a multidisciplinary hospital.
About the Authors
Evgeniia V. GavriliukRussian Federation
Liya S. Bayramova
Russian Federation
Nadezhda N. Pribylova
Russian Federation
Dr. Sci. (Med.), Professor, Professor of the Department of Internal Diseases of the Institute of Continuing Education, KSMU, Kursk, Russian Federation
References
1. Karpin V.A., Shuvalova O.I. Microbiome of the respiratory system in modern pulmonology. Flagship of science. 2024;5(16):186-189 (in Russ.). DOI: 10.37539/2949-1991.2024.5.16.012. EDN: GXLGIM.
2. Lipinksi J.H., Ranjan P., Dickson R.P., O’Dwyer D.N. The Lung Microbiome. J Immunol. 2024;212(8): 1269-1275. DOI: 10.4049/jimmunol.2300716.
3. Sulaiman I., Wu B.G., Li Y., Tsay J.C., Sauthoff M., Scott A.S., Ji K., Koralov S.B., yet al. Functional lower airways genomic profiling of the microbiome to capture active microbial metabolism. Eur Respir J. 2021;58(1):2003434. DOI: 10.1183/13993003.03434-2020.
4. Natalini J.G., Singh S., Segal L.N. The dynamic lung microbiome in health and disease. Nat Rev Microbiol. 2023;21:222-235. DOI: 10.1038/s41579-022-00821-x.
5. Singh S., Natalini J.G., Segal L.N. Lung microbial-host interface through the lens of multi-omics. Mucosal Immunol. 2022;15(5):837-845. DOI: 10.1038/s41385-022-00541-8.
6. Mirzakhanov S.M., Mirzakhanov A.M. Analysis of antibiotic sensitivity and antibiotic resistance of Streptococcus pneumoniae, Staphilococcus aureus, Streptococcus haemolyticus pathogens in children in the Department of Pulmonology. Modern problems of science and education. 2022;(1):70 (in Russ.). DOI: 10.17513/spno.31454. EDN: XCVCPY.
7. Beloborodov V.B., Gusarov V.G., Dekhnich A.V., Zamyatin M.N., Zubareva N.A., Zyryanov S.K., Kamyshova D.A., Klimko N.N., et al. Diagnostics and antimicrobial therapy of the infections caused by multiresistant microorganisms. Guidelines of the Association of Anesthesiologists-Intensivists, the Interregional Non-Governmental Organization Alliance of Clinical Chemotherapists and Microbiologists, the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC), and NGO Russian Sepsis Forum. Messenger of Anesthesiology and Resuscitation. 2020;17(1):52-83 (in Russ.). DOI: 10.21292/2078-5658-2020-17-1-52-83. EDN: URHOQO.
8. Wu B.G., Sulaiman I., Tsay J.J., Perez L., Franca B., Li Y., Wang J., Gonzalez A.N., et al. Episodic aspiration with oral commensals induces a MyD88-dependent, pulmonary T-helper cell type 17 response that mitigates susceptibility to Streptococcus pneumoniae. Am J Respir Crit Care Med. 2021;203(9): 1099-1111. DOI: 10.1164/rccm.202005-1596OC.
9. Fesenko O.V., Sinopal’nikov A.I., Yanina A.A., Tokmulina G.M. Sustainable Antibacterial Management of Respiratory Infections in Actual Practice. Doctor.Ru. 2020;19(5):67-73 (in Russ.). DOI: 10.31550/1727-2378-2020-19-5-67-73. EDN: QPOAIH.
10. Akimkin V.G., Tutelyan A.V., Shulakova N.I., Voronin E.M. COVID-19 pandemic: a new round of antibiotic resistance. Infectious diseases. 2021;19(3):133-138 (in Russ.). DOI: 10.20953/1729-9225-2021-3-133-138. EDN: XTWDKK.
11. Martin, C., Guzior, D.V., Gonzalez C.T., Okros M., Mielke J., Padillo L., Querido G., Gil M., et al. Longitudinal microbial and molecular dynamics in the cystic fibrosis lung after Elexacaftor-Tezacaftor-Ivacaftor therapy. Respir Res. 2023;24:317. DOI: 10.1186/s12931-023-02630-z.
12. Tunney M.M., Wark P. Long-term therapy with elexacaftor/tezacaftor/ivacaftor (ETI) in cystic fibrosis: improved clinical outcomes but infection and inflammation persist. Eur Respir J. 2023;62(2):2301008. DOI: 10.1183/13993003.01008-2023.
13. Ampulembang D.T., Handayani I., Kadir N.A. Bacterial Identification and Antibiotic Sensitivity Tests of COVID-19 Patients at ICU Wahidin Sudirohusodo Hospital. Indonesian Journal of Clinical Pathology and Medical Laboratory. 2025;31(2):155-160. DOI: 10.24293/ijcpml.v31i2.2275.
14. Russian recommendations. Determination of the sensitivity of microorganisms to antimicrobial drugs. Version 2024-02. Year of approval (frequency of revision): 2024 (annual revision). Smolensk: MAKMAKH, SSMU, 2024. 192 p. (in Russ.). URL: https://www.antibiotic.ru/files/334/ocmap2024.pdf
15. Bharadwaj A., Rastogi A., Pandey S., Gupta S., Sohal J.S. Multidrug-resistant bacteria: Their mechanism of action and prophylaxis. Biomed Res Int. 2022;2022:5419874. DOI: 10.1155/2022/5419874.
16. Recommendations. Determination of the sensitivity of microorganisms to antimicrobial drugs. Version 2021-01. Year of approval (frequency of revision): 2021 (revision annually). 2021. 225 p. (in Russ.). URL: https://www.antibiotic.ru/files/321/clrec-dsma2021.pdf
17. Nolley E.P., Sahetya S.K., Hochberg C.H., Hossen S., Hager D.N., Brower R.G., Stuart E.A., Checkley W. Outcomes among mechanically ventilated patients with severe pneumonia and acute hypoxemic respiratory failure from SARS-CoV-2 and other etiologies. JAMA Network Open. 2023;6(1):e2250401. DOI: 10.1001/jamanetworkopen.2022.50401.
18. Agyepong N., Fordjour F., Owusu-Ofori A. Multidrugresistant Acinetobacter baumannii in healthcare settings in Africa. Frontiers in Tropical Diseases. 2023;4:1-9. DOI: 10.3389/fitd.2023.1110125
Review
For citations:
Gavriliuk E.V., Bayramova L.S., Pribylova N.N. Assessment of antibiotic resistance and antibiotic sensitivity of infectious agents in patients of a multidisciplinary somatic hospital after the COVID-19 pandemic. Humans and their health. 2025;28(2):37-44. (In Russ.) https://doi.org/10.21626/vestnik/2025-2/05. EDN: JSEFEW