Preclinical evaluation of phenosanic acid safety and toxicokinetics
https://doi.org/10.21626/vestnik/2024-4/01
EDN: CXVVIN
Abstract
Detailed post-marketing studies of phenosanoic acid, the active ingredient of the original domestic medicinal product Dibufelon®, approved for human medical use as an antiepileptic agent, are aimed at improving its clinical use.
Objective - analysis of toxic properties, immunotoxicity, toxicokinetics and elements of drug dependence development, assessment of possible carcinogenic properties of phenosanoic acid in sexually mature beagle dogs with repeated oral administration with a period of delayed observation.
Materials and methods. Phenosanoic acid was administered orally to dogs (control group of animals, 2 males and 2 females and 3 experimental groups of animals of 5 males and 5 females) for 270 days at doses of 24, 60 and 120 mg/kg (1; 2.5 and 5 higher therapeutic doses (VTD), respectively). The general toxic properties, local irritating effect, effect on immunocompetent organs, elements of drug dependence development, possible carcinogenic properties, as well as basic pharmacococcinetic parameters (Cmax, Tmax, AUC0-24, MRT, T1/2) were evaluated.
Results. the drug phenosanoic acid did not have a locally irritating, immunotoxic and carcinogenic effect, did not cause withdrawal syndrome. Neurological and behavioral abnormalities (tremors, isolated cases of slight depression of behavior and refusal of feed) were detected when the drug was administered mainly at medium and maximum doses. No dose of no apparent adverse effect (NOAEL) was established (less than 24 mg/kg). Toxicokinetic analysis showed no cumulation of the active ingredient after repeated oral administration.
Conclusion. the use of phenosanoic acid should take into account possible side effects (neurological and behavioral) that are associated with the direct pharmacological profile of the drug. Keywords: phenosanic acid; safety; toxicokinetics; preclinical studies.
About the Authors
Vera M. KosmanRussian Federation
Marina V. Karlina
Russian Federation
Cand. Sci. (Biol.), Head of department of technology, kinetics and analysis of drugs, «RMC «HOME OF PHARMACY», Kuzmolovsky urban-type settlement, Russian Federation
0000-0002-6292-8934
Elizaveta V. Mazukina
Russian Federation
Head deputy of Department of Experimental pharmacology and toxicology, RMC «HOME OF PHARMACY»
Sergei V. Morozov
Russian Federation
Cand. Sci. (Med), development director, LLC “PIQ-PHARMA”, Moscow, Russian Federation
Eugenia E. Gushchina
Russian Federation
medical information specialist, LLC “PIQ-PHARMA”, Moscow, Russian Federation
Natalia V. Zhuravskaya
Russian Federation
Head of medical department, LLC “PIQ-PHARMA”, Moscow, Russian Federation
Marina N. Makarova
Russian Federation
Valery G. Makarov
Russian Federation
References
1. Burd S.G., Lebedeva A.V., Pantina N.V., Rubleva Yu.V., Pizova N.V., Vasil’ev S.V., Belova A.N., Vorobeva O.V., et al. Clinical results and prospects for the use of phenosanic acid in patients with focal epilepsy. S.S. Korsakov Journal of neurology and psychiatry. 2021;121(10):52-59 (in Russ.). DOI: 10.17116/jnevro202112110152. EDN: TKWELY.
2. Voronkova K.V., Alieva A.M., Nikitin I.G., Musina G.M., Surskaya E.V., Zaitseva O.S., Mashkevich N.G., Gomonova L.V., et al. The role of the phenosanic acid in the combined treatment of patients with epilepsy. S.S. Korsakov Journal of neurology and psychiatry. 2023;123(2):151-157 (in Russ.). DOI: 10.17116/jnevro2023123021151. EDN: SSDKMR.
3. Bespalov V.G., Alexandrov V.A., Korman D.B. Anticarcinogenic effect of antioxadant phenozan (4-oxy-3,5 di-tret-butylphenylpropionic acid) on spontaneous carcinogenesis in rats and mice. Siberian journal of oncology. 2012; 2(50):52-56 (in Russ.). EDN: PBMFBZ.
4. Chasovskaya T.E., Plashchina I.G., Pal’mina N.P. Physicochemical alterations in liposomes induced by low concentrations of synthetic antioxidant potassium phenosan. Dokl Phys Chem. 2013;449:94-97. DOI: 10.1134/S0012501613040106. EDN: RFJVTD.
5. Yakovleva A.A., Litvinova S.A., Voronina T.A., Ivashova D.M., Kasabov D.M., Gushchina E.E., Morosov S.V., Kudrin V.S. Study of potentiation of valproic acid and carbamazepine by phenosanic acid and analysis of neurochemical parameters Experimental and clinical pharmacology. 2022;85(12):31-37 (in Russ.). DOI: 10.30906/0869-2092-2022-85-12-31-37. EDN: UAYIVL.
6. Mychko E.N. Dog behavior. A manual for dog breeders. Moscow: OOO «AKVARIUM PRINT», 2004. 160 p.(in Russ.)
7. Russell W.M.S, Burch R.L. The principles of humane experimental technique. London: Methuen and Co; 1959. 238 p.
8. Mazukina E.V., Shekunova E.V., Kosman V.M., Urakova I.N., Kotelnikova I.G., Fonarev M.Yu., Ezhova E.A., Zakalyukina E.V., et al. Preclinical Study of the Efficacy and Safety of Chondroitin Sulfate. Safety and Risk of Pharmacotherapy. 2021;9(1):43-57 (in Russ.). DOI: 10.30895/2312-7821-2021-9-1-43-57. EDN: JZGHVP
9. Vavilova V.A., Shekunova E.V., Jain E.A., Balabanyan V.Yu., Ozerov A.A., Makarova M.N., Makarov V.G. Experimental study of toxic properties of VMU-2012-05 drug - original non-nucleeeside inhibitor of HIV-1 reverse transcriptase. Pharmacy and Pharmacology. 2021;9(3):205-221 (in Russ.). DOI: 10.19163/2307-9266-2021-9-3-205-221. EDN: ZLXJLH.
10. Kosman V.M., Karlina M.V., Mazukina E.V., Globenko A.A., Jain E.A., Makarova M.N., Makarov V.G. Preclinical Evaluation of Esomeprazole Safety and Toxicokinetics. Safety and Risk of Pharmacotherapy. 2023;11(2):176-190 (in Russ.). DOI:10.30895/2312-7821-2023-11-2-342. EDN: ZLXJLH.
11. Karlina M.V., Kosman V.M., Makarov V.G., Makarova M.N., Morozov S.V., Gushchina E.E., Zhuravskaya N.V. Pharmacokinetic Interactions of Phenosanic Acid with Valproic Acid and Carbamazepine in Dogs. Safety and Risk of Pharmacotherapy. 2022;10(4):420-433 (in Russ.). DOI: 10.30895/2312-7821-2022-10-4-420-433. EDN: WVBMMZ.
12. Zhang Y., Huo M., Zhou J., Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel.Comput Methods Programs Biomed. 2010;99(3):306-314. DOI: 10.1016/j.cmpb.2010.01.007.
13. Lugovik I.A., Shekunova E.V. Evaluation of the use of various formula for correction of the QT interval (QTC) and ECG reference intervals in anesthetized beagle dogs. Laboratory Animals for Science. 2022;(2):32-43 (in Russ.). DOI: 10.29296/2618723X-2022-02-04. EDN: IFUVQE.
14. Kosman V.M., Karlina M.V., Petrova E.M., Makarova M.N., Makarov V.G. On the assessment of contamination and analysis of control samples in toxicokinetics studies. Translational Medicine. 2024;11(4):351-363 (in Russ.). DOI: 10.18705/2311-4495-2024-11-4-351-363. EDN: FWCXVC.
15. Löscher W., Potschka H., Rieck S., Tipold A., Rundfeldt C. Anticonvulsant efficacy of the low-affinity partial benzodiazepine receptor agonist ELB 138 in a dog seizure model and in epileptic dogs with spontaneously recurrent seizures. Epilepsia. 2004;45(10):1228-1239. DOI: 10.1111/j.0013-9580.2004.21204.x.
16. Kosman V.M., Karlina M.V., Tyutina K.V., Makarov V.G., Makarova M.N., Morozov S.V., Gushchina E.E., Zhuravskaya N.V. Preclinical study of pharmacokinetic ADME processes of phenosanic acid in vitro and in vivo. Reviews on Clinical Pharmacology and Drug Therapy. 2022;20(3):297-308 (in Russ.). DOI: 10.17816/RCF203297-308. EDN: MJQPAM.
17. Prokopov A.A., Shukil' L.V., Berlyand A.S. Studying the bioavailability of fenozan acid in various medicinal forms. Pharmaceutical chemistry journal. 2006;40(1):1-4. DOI: 10.1007/s11094-006-0046-2. EDN: LJUSTH.
18. Kondratenko S.N., Starodubtsev A.K., Belyakova G.A. HPLC determination and pharmacokinetics of the new original domestic drug Dibufelon®. Pharmaceutical chemistry journal. 2009;43(11):641-643. DOI: 10.1007/s11094-010-0370-4. EDN: LPOAXF.
Review
For citations:
Kosman V.M., Karlina M.V., Mazukina E.V., Morozov S.V., Gushchina E.E., Zhuravskaya N.V., Makarova M.N., Makarov V.G. Preclinical evaluation of phenosanic acid safety and toxicokinetics. Humans and their health. 2024;24(4):4-21. (In Russ.) https://doi.org/10.21626/vestnik/2024-4/01. EDN: CXVVIN