Preview

Humans and their health

Advanced search

Stimulation of proliferation and osteoblastic differentiation of osteogenic precursors as pharmacological effects of resveratrol in hypoestrogenism-induced osteoporosis: structural and functional manifestations and possible mechanisms

https://doi.org/10.21626/vestnik/2024-3/12

EDN: XMAUWW

Abstract

Objective - investigation of changes in the microstructure and mineral density of the proximal parts of the femur (head, neck) and tibia in experimental postmenopausal osteoporosis and its therapy with resveratrol and analysis of their possible mechanisms. Materials and methods. The study was performed on 15 female Wistar rats. A model of postmenopausal osteoporosis was created by bilateral ovariectomy with a follow-up period of 56 days. Resveratrol therapy in the experimental group was performed by its daily intraperitoneal administration at a dose of 2 mg / kg during the same observation period. Histological examination with image analysis and morphometry, absorption X-ray densitometry of the proximal epiphysis of the femur and proximal half of the tibia were performed. Results. Bilateral ovariectomy in experimental animals - Wistar rats, leads after 8 weeks to a complex of structural changes in the proximal parts of the femur and tibia and a decrease in bone mineral density in them, which can be extrapolated to osteoporotic skeletal damage in humans. Resveratrol at a dose of 2 mg/kg has osteoprotective and regenerative effects in experimental postmenopausal osteoporosis. Conclusion. Resveratrol at a dose of 2 mg/kg has a cytoprotective effect for osteocytes and osteogenic progenitor cells, exhibits a proliferative and osteoblastic committal effect on bone marrow stromal precursors, inhibiting the adipocytic differentiation pathway and thereby providing an anti-osteoporotic effect in hypoestrogenism. Based on comparisons with literature data, the key factor realizing the effects of resveratrol is most likely the sirt1 protein.

References

1. Rozhinskaya L.Y., Lutsenko A.S. Report on the international symposium on osteoporosis. Osteoporosis and Bone Diseases. 2021;24(3);33-34 (in Russ). EDN: GTXKDU.

2. Clinical recommendations “Osteoporosis” 2021; 82 p. (in Russ). URL: https://cr.minzdrav.gov.ru/recomend/87_4

3. Belaya Zh.E., Belova K.YU., Biryukova E.V., Dedov I.I., Dzeranova L.K., Drapkina O.M., Dreval A.V., Dubovitskaya T.A., Dudinskaya E.N., et al.Russian federal clinical guidelines on the diagnostics, treatment, and prevention of osteoporosis. Problems of endocrinology. 2017;63(6):392-426 (in Russ). DOI: 10.14341/probl2017636392-426. EDN: YNULGQ.

4. Knjaz'kova I.I. Clinical pharmacology of bisphosphonates. Farmakoterapiya. 2014;5-6(181-182):84-89 (in Russ)

5. Korokin M.V., Soldatov V.O., Gudyrev O.S., Koklin I.S., Taran E.I., Mishenin M.O., Korokina L.V., Kochkarov A.A., et al. The role of cortisol metabolism in the realization of pathogenetic links in the development of osteoporosis - the rationale for the search for new pharmacotherapeutic targets (review). Research results in biomedicine. 2022;8(4):457-473 (in Russ). DOI: 10.18413/2658-6533-2022-8-4-0-5. EDN: GWBHAV

6. Trunov K.S., Danilenko A.P., Gudyrev O.S., Danilenko L.M., Pokrovsky M.V., Skachilova S.Ya., Cherednichenko A.A, et al. Supramolecular complex based on 3-hydroxypyridine derivatives prevents osteoporosis caused by estrogen deficiency by inhibiting oxidative stress. Experimental and clinical pharmacology. 2023;86(2):28-35 (in Russ). DOI: 10.30906/0869-2092-2023-86-2-28-35. EDN: JGCGCN.

7. Camacho P.M. Metabolic bone diseases. A case based approach. Springer Switzerland, 2019. 270 p.

8. Vasilyev G.V., Novikov O.O., Kochkarov V.I., Lukasheva O.B., Pisarev D.I., Kiseleva T.S., Fadeyeva D.A. Pharmacological description of resveratrol. Kursk scientific and practical bulletin “Man and his health”. 2007;(3):97-104 (in Russ). EDN: KCKSRH.

9. Gudyrev O.S., Faytelson A.V., Pokrovsky M.V., Ivanov A.V., Koklina N.Yu., Stabrovskaya N.V., Vanyan A.Sh., Narykov R.A. et al. Osteoprotective effect of enalapril, losartan and resveratrol in experimental osteoporosis. Scientific Bulletin of Belgorod State University. Series: Medicine. Pharmacy. 2011;22-2(117):9-17 (in Russ). EDN: TELGBX.

10. Manolagas S.C. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31(3):266-300. DOI: 10.1210/er.2009-0024.

11. Vertkin A.L., Naumov A.V. Osteoporosis. Moscow: Eksmo, 2015. 272 p. (in Russ)

12. Poryadin G.V., Zakhvatov A.N., Samarina D.V. Pathogenetic mechanisms of postmenopausal osteoporosis formation and their relationship with cardiovascular pathology. Bulletin of Siberian medicine. 2022;21(1):144-151 (in Russ). DOI: 10.20538/1682-0363-2022-1-144-151. EDN: JJEVEA.

13. Schrauwen P., Timmers S. Can resveratrol help to maintain metabolic health? Proc Nutr Soc. 2014;73(2):271-277. DOI: 10.1017/S0029665113003856.

14. Dolzhenko A., Richter T., Sagalovsky S. Atherosclerosis, vascular calcification and bone loss (osteoporosis): common pathophysiological mrchanisms development of the deseases and research novel drags for dual therapie. Ateroscleroz. 2016;12(4):44-67 (in Russ.). EDN: XQOKOH.

15. Brailova N.V., Kuznetsova V.A., Dudinskaya E.N., Tkacheva O.N. Aging bone.Russian journal of geriatric medicine. 2020;(2):147-153 (in Russ). DOI: 10.37586/2686-8636-2-2020-147-153. EDN: UDAFYN.

16. Shishkova V.N., Shishkova V.N. Obesity and osteoporosis. Osteoporosis and Bone Diseases. 2011;14(1):21-26 (in Russ). DOI: 10.14341/osteo2011121-26.

17. Reid I.R. Relationships between fat and bone. Osteoporos Int. 2008;19(5):595-606. DOI: 10.1007/s00198-007-0492-z.

18. Yousefzadeh N., Kashfi K., Jeddi S., Ghasemi A. Ovariectomized rat model of osteoporosis: a practical guide. EXCLI J. 2020;19:89-107. DOI: 10.17179/excli2019-1990.

19. Bäckesjö C.M., Li Y., Lindgren U., Haldosén L.A. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J Bone Miner Res. 2006;21(7):993-1002. DOI: 10.1359/jbmr.060415.

20. Mizutani K., Ikeda K., Kawai Y., Yamori Y. Resveratrol stimulates the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun. 1998;253(3):859-863. DOI: 10.1006/bbrc.1998.9870.

21. Bennetau-Pelissero C., Latonnelle K., Sequeira A., Lamothe V. Phytoestrogens, endocrine disrupters from food. Analusis. 2000;28:763-775. DOI: 10.1051/analusis:2000280763.

22. Meng-Yao S., Ying Y., Ling X., Khalid R., Wei X., Hong Z. Dadzein: A review of pharmacological effects. Afr J Tradit Complement Altern Med. 2016;13(3):117-132. DOI: 10.4314/ajtcam.v13i3.15.

23. Akune T., Ohba S., Kamekura S., Yamaguchi M., Chung U.I., Kubota N., Terauchi Y., Harada Y., et al. PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest. 2004;113(6):846-855. DOI: 10.1172/JCI19900.

24. Tintut Y., Morony S., Demer L.L. Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler Thromb Vasc Biol. 2004;24(2): e6-10. DOI: 10.1161/01.ATV.0000112023.62695.7f.

25. Pukhalskaia A.E., Dyatlova A.S., Linkova N.S., Kozlov K.L., Kvetnaia T.V., Koroleva M.V., Kvetnoy I.M. Sirtuins as Possible Predictors of Aging and Alzheimer's Disease Development: Verification in the Hippocampus and Saliva. Bull Exp Biol Med. 2020;169(6):821-824. DOI: 10.1007/s10517-020-04986-4.

26. Pukhalskaia A.E., Diatlova A.S., Linkova N.S., Kvetnoy I.M. Sirtuins: the role in oxidative stress regulation and pathogenesisof neurodegenerative diseases. Progress in physiological science. 2021;52(1):90-104 (in Russ). DOI: 10.31857/S0301179821010082. EDN: WNNNKM.

27. Aitbaev K.A., Murkamilov I.T., Murkamilova Zh.A., Kudaibergenova I.O., Yusupov F.A. Epigenetic mechanisms of cardioprotection: focus is on activation of sirtuins. Arkhiv vnutrenney meditsiny. 2021;11(6):424-432 (in Russ). DOI: 10.20514/2226-6704-2021-11-6-424-432. EDN: TPUAJV.

28. Almeida M., Porter R.M. Sirtuins and FoxOs in osteoporosis and osteoarthritis. Bone. 2019;121:284-292. DOI: 10.1016/j.bone.2019.01.018.

29. Pukhalskaia A.E., Kvetnoy I.M., Linkova N.S., Diatlova A.S., Gutop E.O., Kozlov K.L., Paltsev M.A. Sirtuins and aging. Progress in physiological science. 2022;53(1):16-27 (in Russ). DOI: 10.31857/S0301179821040056. EDN: KUNLXB.

30. Trzeciakiewicz A., Habauzit V., Horcajada M.N. When nutrition interacts with osteoblast function: molecular mechanisms of polyphenols. Nutr Res Rev. 2009;22(1):68-81. DOI: 10.1017/S095442240926402X.

31. Feng J., Liu S., Ma S., Zhao J., Zhang W., Qi W., Cao P., Wang Z., et al. Protective effects of resveratrol on postmenopausal osteoporosis: regulation of SIRT1 NF-κB signaling pathway. Acta Biochim Biophys Sin (Shanghai). 2014;46(12):1024-1033. DOI: 10.1093/abbs/gmu103.

32. Kochkarov V.I.Comparative research of endothelio- and cardioprotective effects resveratrole and its combinations with enalapril and lozartan at hypoestrogen the induced experimental dysfunction of an endothelium. Kuban scientific medical bulletin. 2008;(5):86-90 (in Russ). EDN: KKPDSD.

33. Bradamante S., Barenghi L., Villa A. Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev. 2004;22(3):169-188. DOI: 10.1111/j.1527-3466.2004.tb00139.x.

34. Moon D.K., Kim B.G., Lee A.R., In Choe Y., Khan I., Moon K.M., Jeon R.H., Byun J.H., et al. Resveratrol can enhance osteogenic differentiation and mitochondrial biogenesis from human periosteum-derived mesenchymal stem cells. J Orthop Surg Res. 2020;15(1):203. DOI: 10.1186/s13018-020-01684-9.

35. López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-1217. DOI: 10.1016/j.cell.2013.05.039.

36. Wood J.G., Rogina B., Lavu S., Howitz K., Helfand S.L., Tatar M., Sinclair D. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 2004;430(7000):686-689. DOI: 10.1038/nature02789.


Review

For citations:


Dolzhikov A.A., Shevchenko O.A. Stimulation of proliferation and osteoblastic differentiation of osteogenic precursors as pharmacological effects of resveratrol in hypoestrogenism-induced osteoporosis: structural and functional manifestations and possible mechanisms. Humans and their health. 2024;27(3):109-118. (In Russ.) https://doi.org/10.21626/vestnik/2024-3/12. EDN: XMAUWW

Views: 92


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5746 (Print)
ISSN 1998-5754 (Online)