Pathophysiological role of copper and zinc metabolism in carcino-genesis and tumor progression - ways to new possibilities of therapy and prognosis
https://doi.org/10.21626/vestnik/2024-3/11
EDN: VPSOPC
Abstract
Objectivе - to carry out a systematic analysis of the data available in the modern literature on the pathophysiological role of copper and zinc metabolism in carcinogenesis and tumor progression. Materials and methods. In preparing the review, the publications of the biomedical literature information databases Scopus (307), PubMed (378), Web of Science (104) were analyzed, eLibrary.ru (219). To obtain full-text documents, the electronic resources PubMed Central (PMC), Science Direct, Research Gate, eLibrary.ru. Results. Copper and zinc play a significant pathophysiological role in carcinogenesis, often being functional antagonists of each other, but sometimes synergists in neoplastic processes. Future prospects for the study of drugs capable of selectively influencing the intrathumoral concentration of these elements create attractive additions to drug therapy. At the moment, all potential drugs are in the early stages of research, but the results for individual nosologies are already promising. Conclusion. It is necessary to continue comprehensive research on the use of copper and zinc ions as therapeutic targets, which may in the future become an alternative to highly toxic classical chemotherapy. The specificity and sensitivity of markers based on the analysis of the concentration of copper and zinc in blood serum and their ratio remains at a fairly low level. This can be a useful tool for assessing the dynamics of copper and zinc levels in the process of antitumor drug therapy of various tumors. In addition, our understanding of the pathophysiological role of these elements allows us to create a complete picture of molecular alterations in each case.
About the Authors
Vladimir V. KhvostovoyRussian Federation
Irina V. Stanoevich
Russian Federation
Ivan M. Goncharov
Dmitry V. Petrochenko
Russian Federation
Anna M. Bykanova
Russian Federation
References
1. Xie J., Yang Y., Gao Y., He J. Cuproptosis: Mechanisms And Links With Cancers. Mol Cancer. 2023;22(1):46. DOI: 10.1186/S12943-023-01732-Y.
2. Costello L.C., Franklin R.B. Zinc Is Decreased In Prostate Cancer: An Established Relationship Of Prostate Cancer! J Biol Inorg Chem. 2011;16(1):3-8. DOI: 10.1007/S00775-010-0736-9.
3. Yaman M., Kaya G., Simsek M.Comparison Of Trace Element Concentrations In Cancerous And Noncancerous Human Endometrial And Ovary Tissues.Int J Gynecol Cancer. 2007;17(1):220-228. DOI: 10.1111/J.1525-1438.2006.00742.X.
4. Krizkova S., Ryvolova M., Hrabeta J., Adam V., Stiborova M., Eckschlager T., Kizek R. Metallothioneins And Zinc In Cancer Diagnosis And Therapy. Drug Metab Rev. 2012;44(4):287-301. DOI: 10.3109/03602532.2012.725414.
5. Li Y. Copper Homeostasis: Emerging Target For Cancer Treatment. IUBMB Life. 2020;72(9):1900-1908. DOI: 10.1002/Iub.2341.
6. Hammond E.M., Giaccia, A.J. The role of p53 in hypoxia-induced apoptosis. biochemical and biophysical research communications. 2005;331(3):718-725. DOI:10.1016/J.Bbrc.2005.03.154
7. Feng Y., Zeng J.W., Ma Q., Zhang S., Tang J., Feng J.F. Serum copper and zinc levels in breast cancer: a meta-analysis. J Trace Elem Med Biol. 2020;62:126629. DOI: 10.1016/J.Jtemb.2020.126629.
8. Saleh S.A.K., Adly H.M., Abdelkhaliq A.A., NassirA.M. Serum Levels Of Selenium, Zinc, Copper, Manganese, And Iron In Prostate Cancer Patients. Curr Urol. 2020;14(1):44-49. DOI: 10.1159/000499261.
9. Zhang M., Shi M., Zhao Y. Association Between Serum Copper Levels And Cervical Cancer Risk: A Meta-Analysis. Biosci Rep. 2018;38(4):BSR20180161. DOI: 10.1042/BSR20180161.
10. Mazdak H., Yazdekhasti F., Movahedian A., Mirkheshti N., Shafieian M. The Comparative Study Of Serum Iron, Copper, And Zinc Levels Between Bladder Cancer Patients And A Control Group.Int Urol Nephrol. 2010;42(1):89-93. DOI: 10.1007/S11255-009-9583-4.
11. Baltaci A.K., Dundar T.K., Aksoy F., Mogulkoc R. Changes In The Serum Levels Of Trace Elements Before And After The Operation In Thyroid Cancer Patients. Biol Trace Elem Res. 2017;175(1):57-64. DOI: 10.1007/S12011-016-0768-2.
12. Baharvand M., Manifar S., Akkafan R., Mortazavi H., Sabour S. Serum Levels Of Ferritin, Copper, And Zinc In Patients With Oral Cancer. Biomed J. 2014;37(5):331-336. DOI: 10.4103/2319-4170.132888.
13. Gomez M.L., Shah N., Kenny T.C., Jenkins E.C. Jr, Germain D. SOD1 Is Essential For Oncogene-Driven Mammary Tumor Formation But Dispensable For Normal Development And Proliferation. Oncogene. 2019 Jul;38(29):5751-5765. DOI: 10.1038/S41388-019-0839-X.
14. Tsymbal S.A., Refeld A.G., Kuchur O.A. The P53 Tumor Suppressor And Copper Metabolism: An Unrevealed But Important Link. Mol Biol (Mosk). 2022;56(6):1057-1071. DOI: 10.31857/S0026898422060222.
15. Blockhuys S., Brady D.C., Wittung-Stafshede P. Evaluation Of Copper Chaperone ATOX1 As Prognostic Biomarker In Breast Cancer. Breast Cancer. 2020;27(3):505-509. DOI: 10.1007/S12282-019-01044-4.
16. Zhang X., Walke G.R., Horvath I., Kumar R., Blockhuys S., Holgersson S., Walton P.H., Wittung-Stafshede P. Memo1 Binds Reduced Copper Ions, Interacts With Copper Chaperone Atox1, And Protects Against Copper-Mediated Redox Activity In Vitro. Proc Natl Acad Sci U S A. 2022;119(37):E2206905119. DOI: 10.1073/Pnas.2206905119.
17. Tsymbal S.A., Refeld A.G., Kuchur O.A. The P53 Tumor Suppressor And Copper Metabolism: An Unrevealed But Important Link. Mol Biol (Mosk). 2022;56(6):1057-1071. DOI: 10.31857/S0026898422060222.
18. Wang W., Lu K., Jiang X., Wei Q., Zhu L., Wang X., Jin H., Feng L. Ferroptosis inducers enhanced cuproptosis induced by copper ionophores in primary liver cancer. J Exp Clin Cancer Res. 2023;42(1):142. DOI: 10.1186/s13046-023-02720-2.
19. Brady D.C., Crowe M.S., Greenberg D.N., Counter C.M. Copper Chelation Inhibits BRAFV600E-Driven Melanomagenesis And Counters Resistance To BRAFV600E And MEK1/2 Inhibitors. Cancer Res. 2017;77(22):6240-6252. DOI: 10.1158/0008-5472.CAN-16-1190.
20. Samimi G., Varki N.M., Wilczynski S., Safaei R., Alberts D.S., Howell S.B. Increase In Expression Of The Copper Transporter ATP7A During Platinum Drug-Based Treatment Is Associated With Poor Survival In Ovarian Cancer Patients. Clin Cancer Res. 2003;9(16 Pt 1):5853-5859.
21. Chang A. Chemotherapy, Chemoresistance And The Changing Treatment Landscape For NSCLC. Lung Cancer. 2011;71(1):3-10. DOI: 10.1016/J.Lungcan.2010.08.022
22. Kanzaki A., Toi M., Neamati N., Miyashita H., Oubu M., Nakayama K., Bando H., Ogawa K., et al. Copper-Transporting P-Type Adenosine Triphosphatase (ATP7B) Is Expressed In Human Breast Carcinoma. Jpn J Cancer Res. 2002;93(1):70-77. DOI: 10.1111/j.1349-7006.2002.tb01202.x.
23. Miyashita H., Nitta Y., Mori S., Kanzaki A., Nakayama K., Terada K., Sugiyama T., et al. Expression of copper-transporting P-type adenosine triphosphatase (ATP7B) as a chemoresistance marker in human oral squamous cell carcinoma treated with cisplatin. Oral Oncol. 2003;39(2):157-162. DOI: 10.1016/s1368-8375(02)00038-6.
24. Ohbu M., Ogawa K., Konno S., Kanzaki A., Terada K., Sugiyama T., Takebayashi Y. Copper-transporting P-type adenosine triphosphatase (ATP7B) is expressed in human gastric carcinoma. Cancer Lett. 2003;189(1):33-38. DOI: 10.1016/s0304-3835(02)00462-7.
25. Tadini-Buoninsegni F., Bartolommei G., Moncelli M.R., Inesi G., Galliani A., Sinisi M., Losacco M., Natile G., et al. Translocation Of Platinum Anticancer Drugs By Human Copper Atpases ATP7A And ATP7B. Angew Chem Int Ed Engl. 2014;53(5): 1297-1301. DOI: 10.1002/Anie.201307718.
26. Song I.S., Savaraj N., Siddik Z.H., Liu P., Wei Y., Wu C.J., Kuo M.T. Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells. Mol Cancer Ther. 2004;3(12):1543-1539.
27. Chen H.H., Yan J.J., Chen W.C., Kuo M.T., Lai Y.H., Lai W.W., Liu H.S., Su W.C. Predictive And Prognostic Value Of Human Copper Transporter 1 (Hctr1) In Patients With Stage III Non-Small-Cell Lung Cancer Receiving First-Line Platinum-Based Doublet Chemotherapy. Lung Cancer. 2012;75(2):228-234. DOI: 10.1016/J.Lungcan.2011.06.011.
28. Bendellaa M., Lelièvre P., Coll J.L., Sancey L., Deniaud A., Busser B. Roles Of Zinc In Cancers: From Altered Metabolism To Therapeutic Applications.Int J Cancer. 2024;154(1):7-20. DOI: 10.1002/Ijc.34679.
29. Kambe T., Tsuji T., Hashimoto A., Itsumura N. The Physiological, Biochemical, And Molecular Roles Of Zinc Transporters In Zinc Homeostasis And Metabolism. Physiol Rev. 2015;95(3):749-784. DOI: 10.1152/Physrev.00035.2014.
30. Pan Z., Choi S., Ouadid-Ahidouch H., Yang J.M., Beattie J.H., Korichneva I. Zinc Transporters And Dysregulated Channels In Cancers. Front Biosci (Landmark Ed). 2017;22(4):623-643. DOI: 10.2741/4507.
31. Bratchikov O.I., Dubonos P.A., Tyuzikov I.A., Zhilyaeva Yu.A. Modern possibilities of increasing the effectiveness of complex pharmacotherapy of chronic bacterial prostatitis. Urologiia. 2022;(3):76-82 (in Russ.). DOI: 10.18565/Urology.2022.3.76-82. EDN: KPSLEM.
32. Ziliotto S., Gee J.M.W., Ellis I.O., Green A.R., Finlay P., Gobbato A., Taylor K.M. Activated Zinc Transporter ZIP7 As An Indicator Of Anti-Hormone Resistance In Breast Cancer. Metallomics. 2019;11(9):1579-1592. DOI: 10.1039/C9mt00136k.
33. Takatani-Nakase T. Zinc Transporters And The Progression Of Breast Cancers. Biol Pharm Bull. 2018;41(10):1517-1522. DOI: 10.1248/Bpb.B18-00086.
34. Brethour D., Mehrabian M., Williams D., Wang X., Ghodrati F., Ehsani S., Rubie E.A., Woodgett J.R., et al. A ZIP6-ZIP10 Heteromer Controls NCAM1 Phosphorylation And Integration Into Focal Adhesion Complexes During Epithelial-To-Mesenchymal Transition. Sci Rep. 2017;7:40313. DOI: 10.1038/Srep40313.
35. Bai Y., Wang G., Fu W., Lu Y., Wei W., Chen W., Wu X., Meng H., et al. Circulating Essential Metals And Lung Cancer: Risk Assessment And Potential Molecular Effects. Environ Int. 2019;127:685-693. DOI: 10.1016/J.Envint.2019.04.021.
36. Cheng X., Wei L., Huang X., Zheng J., Shao M., Feng T., Li J., Han Y., et al. Solute Carrier Family 39 Member 6 Gene Promotes Aggressiveness Of Esophageal Carcinoma Cells By Increasing Intracellular Levels Of Zinc, Activating Phosphatidylinositol 3-Kinase Signaling, And Up-Regulating Genes That Regulate Metastasis. Gastroenterology. 2017;152(8):1985-1997.E12. DOI: 10.1053/J.Gastro.2017.02.006.
37. Ishida S., Kasamatsu A., Endo-Sakamoto Y., Nakashima D., Koide N., Takahara T., Shimizu T., Iyoda M., et al. Novel Mechanism Of Aberrant ZIP4 Expression With Zinc Supplementation In Oral Tumorigenesis. Biochem Biophys Res Commun. 2017;483(1):339-345. DOI: 10.1016/J.Bbrc.2016.12.142.
38. Pal D., Sharma U., Singh S.K., Prasad R. Association Between ZIP10 Gene Expression And Tumor Aggressiveness In Renal Cell Carcinoma. Gene. 2014;552(1):195-198. DOI: 10.1016/J.Gene.2014.09.010.
39. Ribeiro S.M.F., Braga C.B.M., Peria F.M., Martinez E.Z., Rocha J.J.R.D., Cunha S.F.C. Effects Of Zinc Supplementation On Fatigue And Quality Of Life In Patients With Colorectal Cancer. Einstein (Sao Paulo).2017;15(1):24-28. DOI: 10.1590/S1679-45082017AO3830.
40. Denoyer D., Clatworthy S.A.S., Cater M.A. Copper Complexes In Cancer Therapy. Met Ions Life Sci. 2018;18:/Books/9783110470734/9783110470734-022/9783110470734-022.Xml. DOI: 10.1515/9783110470734-022.
41. Brewer G.J., Dick R.D., Grover D.K., Leclaire V., Tseng M., Wicha M., Pienta K., Redman B.G., et al. Treatment Of Metastatic Cancer With Tetrathiomolybdate, An Anticopper, Antiangiogenic Agent: Phase I Study. Clin Cancer Res. 2000;6(1):1-10.
42. Wadhwa S., Mumper R.J. D-Penicillamine And Other Low Molecular Weight Thiols: Review Of Anticancer Effects And Related Mechanisms. Cancer Lett. 2013;337(1):8-21. DOI: 10.1016/J.Canlet.2013.05.027.
43. Kathawala M., Hirschfield G.M. Insights Into The Management Of Wilson's Disease. Therap Adv Gastroenterol. 2017;10(11):889-905. DOI: 10.1177/1756283X17731520.
44. Cater M.A., Haupt Y. Clioquinol Induces Cytoplasmic Clearance Of The X-Linked Inhibitor Of Apoptosis Protein (XIAP): Therapeutic Indication For Prostate Cancer. Biochem J. 2011;436(2):481-491. DOI: 10.1042/BJ20110123.
45. Yang R., Wu R., Mei J., Hu F.R., Lei C.J. Zinc Oxide Nanoparticles Promotes Liver Cancer Cell Apoptosis Through Inducing Autophagy And Promoting P53. Eur Rev Med Pharmacol Sci. 2021;25(3):1557-1563. DOI: 10.26355/Eurrev_202102_24864.
Review
For citations:
Khvostovoy V.V., Stanoevich I.V., Goncharov I.M., Petrochenko D.V., Bykanova A.M. Pathophysiological role of copper and zinc metabolism in carcino-genesis and tumor progression - ways to new possibilities of therapy and prognosis. Humans and their health. 2024;27(3):98-108. (In Russ.) https://doi.org/10.21626/vestnik/2024-3/11. EDN: VPSOPC