Preview

Humans and their health

Advanced search

Applied anatomy of mandibular canal

https://doi.org/10.21626/vestnik/2023-3/08

EDN: NPCTGH

Abstract

The mandibular canal (canalis mandibulae) runs in the thickness of the mandible from the mandibular foramen (foramen mandibulae) to the mental foramen (foramen mentale). The knowledge of its topography and relations with the dental root apices is of great practical importance for the prevention of iatrogenic injuries of the inferior alveolar neurovascular bundle during endodontic and orthodontic treatment and during a number of surgical procedures, such as extraction, resection of the apices of the roots of the teeth, cystectomy, removal of intraosseous neoplasms, as well as during conduction anesthesia. The purpose of this work is to summarize information about the variants of the structure and topography of the mandibular canal. The article considers variants of the structure, course, and topography of the mandibular canal, including in cases of adentia, revealed on the basis of various methods of research. In addition to the use of natural preparations (cuts of the lower jaws), modern radiation research methods, such as radiography, computed tomography and cone-beam computed tomography, are widely used to study the topography of the mandibular canal. The mandibular canal is characterized by significant variability in its course and complex relationships with surrounding structures. The most common variation in the structure of the canal is its bifurcation, which is associated with the peculiarities of embryonic development and is of great clinical importance. Up to date, there are several classifications of variants of its structure that can be used in clinical practice. Further accumulation and systematization of data on its anatomical and topographic features are important for the diagnosis and implementation of therapeutic manipulations in this area.

References

1. Haas L.F., Dutra K., Porporatti A.L., Mezzomo L.A., De Luca Canto G., Flores-Mir C., Corrêa M. Anatomical variations of mandibular canal detected by panoramic radiography and CT: a systematic review and meta-analysis. Dentomaxillofac Radiol. 2016;45(2):20150310. DOI: 10.1259/dmfr.20150310.

2. Sirak S.V., Kopilova I.A. Anatomy and topography of the low jaw canal. Vestnik Smolenskoy meditsinskoy akademii. 2010;9(2):126-127 (in Russ.). EDN: OJDNAF.

3. Zhuravleva N.V., Kabak S.L., Melnichenko Yu.M., Savrasova N.A. Topography of the mandibular canal according to cone beam computed tomography. Sovremennaya stomatologiya. 2018;3(72):52-57 (in Russ.). EDN: YLFYRF.

4. Kabak S.L., Zhuravleva N.V. Morphogenesis of mandible in human embryos. Stomatologicheskiy zhurnal. 2018;19(4):279-282 (in Russ.). EDN: JPNTBJ.

5. Kabak S.L., Melnichenko Yu.M., Savrasova N.A., Zhuravleva N.V. Bifid mandibular canal. Stomatologiya. 2018;97(1):63-66 (in Russ.). DOI: 10.17116/stomat201897163-66. EDN: YPCDQF.

6. Korobkeyev A.A., Sirak S.V., Kopylova I.A. Study of the аnатомicо-topographical structure of the mandible for endodontic and implantology treatment. Medical news of North Caucasus. 2010;(1):17-21 (in Russ.). EDN: MWOASX.

7. Korobkeyev A.A., Sirak S.V., Mihailenko A.A. Features of the аnатомо-topographical structure of the mandibule as one of the risk factors of injection of root canal filling material into the mandibular canal. Medical news of North Caucasus. 2008;(1):46-48 (in Russ.). EDN: MWNVPB.

8. Sirak S.V., Kopylova I.A. Planning of endodontic and implantologic treatment on the basis of anatomic and topographic features of the low jaw bone. Vestnik Smolenskoy meditsinskoy akademii. 2010;9(2):129-131 (in Russ.). EDN: OJDNAZ.

9. Sirak S.V., Korobkeyev A.A., Shapovalova I.A., Mihailenko A.A. Features of the anatomo-topographical structure of the mandibular as one of the risk factors of injection of the root siller material in to the infraolveolar channel. Endodontiya today. 2008;(2):55-60 (in Russ.). EDN: JTOJYT.

10. Chibisova M.A., Gos'kov I.A., Fadeev R.A., Andreishchev A.R., Solov'ev M.M., Mahlin I.A. Features of topography of mandibular canal by dental computed tomography. Institut stomatologii. 2008;4(41):102-104 (in Russ.). EDN: MBXDHN.

11. Baybakov S.E., Bakhareva N.S., Dorogan V.V., Dorogan V.V. A study of gender differences in morphometric parameters of the lower jaw (according to cone-beam computed tomography). Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal. 2021;6-2(108): 98-102 (in Russ.). DOI: 10.23670/IRJ.2021.108.6.052. EDN: FFNLHW.

12. Razumova S.N., Brago A.S., Manvelyan A.S., Khuayzhi A., Barakat Kh., Baykulova M.D., Volovikov O.I., et al. Assessment of mandible molars’ length and distancefrom tops of molars to important anatomical structures according to cone-beam computed tomography data in various age groups. Meditsinskiy alfavit. 2018;371(34):54-56 (in Russ.). EDN: YXXUZN.

13. Chávez-Lomeli M.E., Mansilla Lory J., Pompa J.A., Kjaer I. The human mandibular canal arises from three separate canals innervating different tooth groups. J Dent Res. 1996;75(8):1540-1544. DOI: 10.1177/00220345960750080401.

14. von Arx T., Bornstein M.M. The bifid mandibular canal in three-dimensional radiography: morphologic and quantitative characteristics. Swiss Dent J. 2021;131(1):10-28.

15. Miličević A., Salarić I., Đanić P., Miličević H., Macan K., Orihovac Ž., Zajc I., Brajdić D., et al. Anatomical Variations of the Bifid Mandibular Canal on Panoramic Radiographs in Citizens from Zagreb, Croatia. Acta Stomatol Croat. 2021;55(3):248-255. DOI: 10.15644/asc55/3/2.

16. Kodera H., Hashimoto I. A case of mandibular retromolar canal: elements of nerves and arteries in this canal. Kaibogaku Zasshi. 1995;70(1):23-30 (in Jap.).

17. Langlais R.P., Broadus R., Glass B.J. Bifid mandibular canals in panoramic radiographs. J Am Dent Assoc. 1985;110(6):923-926. DOI: 10.14219/jada.archive.1985.0033.

18. Naitoh M., Hiraiwa Y., Aimiya H., Ariji E. Observation of bifid mandibular canal using cone-beam computerized tomography.Int J Oral Maxillofac Implants. 2009;24(1):155-159.

19. Kang J.H., Lee K.S., Oh M.G., Choi H.Y., Lee S.R., Oh S.H., Choi Y.J., Kim G.T., Choi Y.S., et al. The incidence and configuration of the bifid mandibular canal in Koreans by using cone-beam computed tomography. Imaging Sci Dent. 2014;44(1):53-60. DOI: 10.5624/isd.2014.44.1.53.

20. Wamasing P., Deepho C., Watanabe H., Hayashi Y., Sakamoto J., Kurabayashi T. Imaging the bifid mandibular canal using high resolution MRI. Dentomaxillofac Radiol. 2019;48(3):20180305. DOI: 10.1259/dmfr.20180305.

21. Deepho C., Watanabe H., Kotaki S., Sakamoto J., Sumi Y., Kurabayashi T. Utility of fusion volumetric images from computed tomography and magnetic resonance imaging for localizing the mandibular canal. Dentomaxillofac Radiol. 2017;46(3):20160383. DOI: 10.1259/dmfr.20160383.

22. Kainmueller D., Lamecker H., Seim H., Zinser M., Zachow S. Automatic extraction of mandibular nerve and bone from cone-beam CT data. Med Image Comput Comput Assist Interv. 2009;12(Pt 2):76-83. DOI: 10.1007/978-3-642-04271-3_10.

23. Abdolali F., Zoroofi R.A., Abdolali M., Yokota F., Otake Y., Sato Y. Automatic segmentation of mandibular canal in cone beam CT images using conditional statistical shape model and fast marching.Int J Comput Assist Radiol Surg. 2017;12(4):581-593. DOI: 10.1007/s11548-016-1484-2.

24. Moris B., Claesen L., Sun Y., Politis, C. Automated tracking of the mandibular canal in CBCT images using matching and multiple hypotheses methods. Fourth International Conference on Communications and Electronics. 2012;327-332. DOI: 10.1109/CCE.2012.6315922.

25. Wallner J., Hochegger K., Chen X., Mischak I., Reinbacher K., Pau M., Zrnc T., Schwenzer-Zimmerer K., et al. Clinical evaluation of semi-automatic open-source algorithmic software segmentation of the mandibular bone: Practical feasibility and assessment of a new course of action. PLoS One. 2018;13(5):e0196378. DOI: 10.1371/journal.pone.0196378.

26. Jaskari J., Sahlsten J., Järnstedt J., Mehtonen H., Karhu K., Sundqvist O., Hietanen A., Varjonen V., et al. Deep Learning Method for Mandibular Canal Segmentation in Dental Cone Beam Computed Tomography Volumes. Sci Rep. 2020;10(1):5842. DOI: 10.1038/s41598-020-62321-3.

27. Qiu B., van der Wel H., Kraeima J., Glas H.H., Guo J., Borra R.J.H., Witjes M.J.H., van Ooijen P.M.A. Automatic Segmentation of Mandible from Conventional Methods to Deep Learning-A Review. J Pers Med. 2021;11(7):629. DOI: 10.3390/jpm11070629.

28. Lee A., Kim M.S., Han S.S., Park P., Lee C., Yun J.P. Deep learning neural networks to differentiate Stafne's bone cavity from pathological radiolucent lesions of the mandible in heterogeneous panoramic radiography. PLoS One. 2021;16(7):e0254997. DOI: 10.1371/journal.pone.0254997.

29. Kreutner J., Hopfgartner A., Weber D., Boldt J., Rottner K., Richter E., Jakob P.M., Haddad D. High isotropic resolution magnetic resonance imaging of the mandibular canal at 1.5 T: a comparison of gradient and spin echo sequences. Dentomaxillofac Radiol. 2017;46(2):20160268. DOI: 10.1259/dmfr.20160268.

30. Deepho C., Watanabe H., Sakamoto J., Kurabayashi T. Mandibular canal visibility using a plain volumetric interpolated breath-hold examination sequence in MRI. Dentomaxillofac Radiol. 2018;47(1):20170245. DOI: 10.1259/dmfr.20170245.

31. Burian E., Sollmann N., Ritschl L.M., Palla B., Maier L., Zimmer C., Probst F., Fichter A., et al. High resolution MRI for quantitative assessment of inferior alveolar nerve impairment in course of mandible fractures: an imaging feasibility study. Sci Rep. 2020;10(1):11566. DOI: 10.1038/s41598-020-68501-5.

32. Dominiak M., Dominiak S., Targonska S., Gedrange T. Three-Dimensional Bone Block Planning for Mandibular Sagittal Bone Defect Reconstruction. J Healthc Eng. 2020;2020:8829288. DOI: 10.1155/2020/8829288.

33. Sirak S.V., Kopylova I.A. The structure of the low jaw canal in case of complete lack of teeth. Vestnik Smolenskoy meditsinskoy akademii. 2010;9(2):132-133 (in Russ.). EDN: OJDNBJ.

34. Iliescu V.I., Cismaş S.C., Truţă R.I., Gherghiţă O.R., Nimigean V., Nimigean V.R. Bifid mandibular canal - a case report. Rom J Morphol Embryol. 2021;62(2):633-636. DOI: 10.47162/RJME.62.2.34.

35. Ngeow W.C., Chai W.L. The clinical anatomy of accessory mandibular canal in dentistry. Clin Anat. 2020;33(8):1214-1227. DOI: 10.1002/ca.23567.

36. Okumuş Ö., Dumlu A. Prevalence of bifid mandibular canal according to gender, type and side. J Dent Sci. 2019;14(2):126-133. DOI: 10.1016/j.jds.2019.03.009.

37. Shah S.P., Mehta D. Mandibular Retromolar Foramen and Canal - A Systematic Review and Meta-Analysis. Ann Maxillofac Surg. 2020;10(2):444-449. DOI: 10.4103/ams.ams_19_20.


Review

For citations:


Grigoryants A.G., Khatypova A.E., Makalish T.P., Kutya S.A. Applied anatomy of mandibular canal. Humans and their health. 2023;26(3):69-75. (In Russ.) https://doi.org/10.21626/vestnik/2023-3/08. EDN: NPCTGH

Views: 397


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5746 (Print)
ISSN 1998-5754 (Online)