Preview

Humans and their health

Advanced search

State of nervous system functions of Wistar rats when using peptide taftsin-PGP (selank) in restraint stress

https://doi.org/10.21626/vestnik/2023-3/07

EDN: JVDAJU

Abstract

The aim of the study was to investigate the state of functions of the nervous system of Wistar rats upon application of the peptide taftsin-PGP under conditions of chronic stress. Materials and methods. The experiments were performed on 45 male Wistar rats weighing 200-230 g. Selank peptide (Thr-Lys-Pro-Arg-Pro-Gly-Pro) was injected intraperitoneally at doses of 80, 250 and 750 μg/kg 15 min before stressor exposure. Animals were divided into 5 groups (n = 9): 1 - control (non-stressed animals injected with saline); 2 - stress (stressed animals injected with saline); 3-5 - stress+taftsin-PGP at doses of 80, 250 and 750 µg/kg. Animals were stressed for 28 days; from days 15 to 28, they were injected with selank/saline. The neurotropic effects of selank were evaluated in the elevated plus-maze, open field (OF) and forced swimming tests. To assess the severity of stress response, the concentration of corticosterone in rat serum was evaluated using enzyme immunoassay. Results. It was found that 28-day immobilisation stress caused disturbances of nervous system functions in the form of increased anxiety, horizontal, vertical, locomotor activity, emotionality and expression of depressive behaviour, as well as increased concentration of corticosterone in blood serum of experimental animals. Taftsin-PGP administration against the background of preliminary stressing (from the 15th to the 28th day of the experiment) contributed to a decrease in the severity of stress-induced behavioural changes in rats: at a dose of 750 µg/kg the peptide had anxiolytic effect, 250 µg/kg - antidepressant effect. At the same time, these changes occurred against the background of a significant decrease in serum corticosterone level. Conclusion. Thus, selank corrects stress-induced changes in the state of nervous system functions under 28-day restraint stress.

References

1. Koroleva S.V., Mjasoedov N.F. Physiological effects of Selank and its fragments. Biol Bull. 2019;46(4): 407-414. DOI: 10.1134/S1062359019040071.

2. Vorvul A.O., Bobyntsev I.I., Svishcheva M.V., Medvedeva O.A., Mukhina A.Y., Andreeva L.A. The Peptide ACTH4-7-PGP Corrects Behavior and Corticosterone Levels in Rats in Chronic Stress. Neurosci Behav Physiol. 2022;52(4):574-581. DOI: 10.1007/s11055-022-01277-5.

3. Vorvul A.O., Bobyntsev I.I., Medvedeva O.A., Mukhina A.Y., Svishcheva M.V., Azarova I.E., Andreeva L.A., Myasoedov N.F. ACTH(6-9)-Pro-Gly-Pro ameliorates anxiety-like and depressive-like behaviour and gut mucosal microbiota composition in rats under conditions of chronic restraint stress. Neuropeptides. 2022;93:102247. DOI: 10.1016/j.npep.2022.102247.

4. Volodina M.A., Sebentsova E.A., Glazova N.Y., Manchenko D.M., Inozemtseva L.S., Dolotov O.V., Andreeva L.A., Levitskaya N.G., et al. Correction of long-lasting negative effects of neonatal isolation in white rats using semax. Acta Naturae. 2012;4(1):86-92.

5. Chiba S., Numakawa T., Ninomiya M., Richards M.C., Wakabayashi C., Kunugi H. Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry. 2012;39(1):112-119. DOI: 10.1016/j.pnpbp.2012.05.018.

6. Mukhina A.Yu., Medvedeva O.A., Svishcheva M.V., Shevchenko A.V., Efremova N.N., Bobyntsev I.I., Kalutskiy P.V. State of experimental animals’ colon microbiocenosis under restraint stress. Astrakhan medical journal. 2019;14(1):54-60 (in Russ.). DOI: 10.17021/2019.14.1.54.60. EDN: WVCDQS.

7. Mukhina A.Y., Medvedeva O.A., Svishcheva M.V., Shevchenko A.V., Efremova N.N., Bobyntsev I.I., Kalutskii P.V., Andreeva L.A., et al. State of Colon Microbiota in Rats during Chronic Restraint Stress and Selank Treatment. Bull Exp Biol Med. 2019;167(2):226-228. DOI: 10.1007/s10517-019-04496-y.

8. Svishcheva M.V., Mukhina A.Y., Medvedeva O.A., Shevchenko A.V., Bobyntsev I.I., Kalutskii P.V., Andreeva L.A., Myasoedov N.F.Composition of Colon Microbiota in Rats Treated with ACTH(4-7)-PGP Peptide (Semax) under Conditions of Restraint Stress. Bull Exp Biol Med. 2020;169(3):357-360. DOI: 10.1007/s10517-020-04886-7.

9. Mukhina A.Yu., Medvedeva O.A., Svishcheva M.V., Shevchenko A.V., Efremova N.N., Bobyntsev I.I., Kalutsky P.V., Andreeva L.A., et al. State of rat colon microbiocenosis in chronic restraint stress treated with Selank.Russian journal of infection and immunity. 2019;9(5-6):805-810 (in Russ.). DOI: 10.15789/2220-7619-2019-5-6-805-810. EDN: QFJPGY.

10. Mukhina A.Y., Mishina E.S., Bobyntsev I.I., Medvedeva O.A., Svishcheva M.V., Kalutskii P.V., Andreeva L.A., Myasoedov N.F. Morphological Changes in the Large Intestine of Rats Subjected to Chronic Restraint Stress and Treated with Selank. Bull Exp Biol Med. 2020;169(2):281-285. DOI: 10.1007/s10517-020-04868-9.

11. Svishcheva M.V., Mishina Y.S., Medvedeva O.A., Bobyntsev I.I., Mukhina A.Y., Kalutskii P.V., Andreeva L.A., Myasoedov N.F. Morphofunctional State of the Large Intestine in Rats under Conditions of Restraint Stress and Administration of Peptide ACTH(4-7)-PGP (Semax). Bull Exp Biol Med. 2021;170(3):384-388. DOI: 10.1007/s10517-021-05072-z.

12. Vorvul A.O., Bobyntsev I.I., Mishina E.S., Medvedeva O.A., Andreeva L.A., Myasoedov N.F. Effects of the ACTH6-9-Pro-Gly-Pro peptide on the morphofunctional state of rat colon under conditions of chronic restraint stress. Bulletin of Siberian Medicine. 2023;22(2):14-20 (in Russ.). DOI: 10.20538/1682-0363-2023-2-14-20. EDN: XQDMAJ.

13. Walf A.A., Frye C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2(2):322-328. DOI: 10.1038/nprot.2007.44.

14. Kraeuter A.-K., Guest P.C., Sarnyai Z. The elevated plus maze test for measuring anxiety-like behavior in rodents. In: Guest P.C., editor. Pre-Clinical Models: Techniques and Protocols. New York, NY: Springer New York; 2019:69-74.

15. Mironov A.N., editor. Guidelines for conducting preclinical studies of medicines. Volume I. Moscow: Grif I K, 2012. 944 p. (in Russ.). EDN: SDEWMP.

16. Gould T.D., Dao D.T., Kovacsics C.E. The Open Field Test. Neuromethods. 2009;42:1-20. DOI: 10.1007/978-1-60761-303-9_1.

17. Kraeuter A.-K., Guest P.C., Sarnyai Z. The Forced Swim Test for Depression-Like Behavior in Rodents. In: Guest P.C., editor. Pre-Clinical Models: Techniques and Protocols. New York, NY: Springer New York; 2019:75-80. DOI: 10.1007/978-1-4939-8994-2_5.

18. Armario A. The forced swim test: Historical, conceptual and methodological considerations and its relationship with individual behavioral traits. Neurosci Biobehav Rev. 2021;128:74-86. DOI: 10.1016/j.neubiorev.2021.06.014.

19. Zozulya A.A., Neznamov G.G., Syunyakov T.S., Kast P.V., Gabaeva M.V., Sokolov O.Yu., Serebryakova E.V., Siranchieva O.A., et al. Efficacy and possible mechanisms of action of a new peptide anxiolytic Selank in the therapy of generalized anxiety disorders and neurasthenia. S.S. Korsakov Journal of neurology and psychiatry. 2008;108(4):38-48 (in Russ.). EDN: ISJLQR.

20. V’yunova T.V., Andreeva L.A., Shevchenko K.V., Shevchenko V.P., Myasoedov N.F. Peptide regulation of specific ligand-receptor interactions of GABA with the plasma membranes of nerve cells. Neurochem J. 2014;8:259-264. DOI: 10.1134/S1819712414040114.

21. Kolomin T.A., Agapova T.Y., Shadrina M.I., Slominskii P.A., Limborskaya S.A., Agniullin Y.V., Shram S.I., Myasoedov N.F. Changes in the transcription profile of the hippocampus in response to administration of the tuftsin analog Selank. Neuroscience and Behavioral Physiology. 2014;44(8):849-855. DOI: 10.1007/s11055-014-9992-4.

22. Kanner B.I. Glutamate transporters from brain. A novel neurotransmitter transporter family. FEBS Lett. 1993;325(1-2):95-99. DOI: 10.1016/0014-5793(93)81421-u.

23. Kolik L.G., Nadorova A.V., Antipova T.A., Kruglov S.V., Kudrin V.S., Durnev A.D. Selank, Peptide Analogue of Tuftsin, Protects Against Ethanol-Induced Memory Impairment by Regulating of BDNF Content in the Hippocampus and Prefrontal Cortex in Rats. Bull Exp Biol Med. 2019;167(5):641-644. DOI: 10.1007/s10517-019-04588-9.

24. Inozemtseva L.S., Karpenko E.A., Dolotov O.V., Levitskaya N.G., Kamensky A.A., Andreeva L.A., Grivennikov I.A.Intranasal administration of the peptide Selank regulates BDNF expression in the rat hippocampus in vivo. Dokl Biol Sci. 2008;421:241-243. DOI: 10.1134/s0012496608040066.

25. Zozulya A.A., Kost N.V., Sokolov O.Yu., Gabayeva M.V., Grivennikov I.A., Andreyeva L.A., Zolotarev Yu.A., Ivanov S.V., et al. The inhibitory effect of Selank on the activity of enkephalindegradating enzymes as one of the possible mechanisms of its anxiolytic action. Bulletin of experimental biology and medicine. 2001;131(4):376-378 (in Russ.)

26. Gabellini N. Transcriptional regulation by cAMP and Ca2+ links the Na+/Ca2+ exchanger 3 to memory and sensory pathways. Mol Neurobiol. 2004;30(1):91-116. DOI: 10.1385/MN:30:1:091.


Review

For citations:


Bobyntsev I.I., Krivoshlykova M.S., Medvedeva O.A., Vorvul A.O., Andreeva L.A., Myasoedov N.F. State of nervous system functions of Wistar rats when using peptide taftsin-PGP (selank) in restraint stress. Humans and their health. 2023;26(3):58-68. (In Russ.) https://doi.org/10.21626/vestnik/2023-3/07. EDN: JVDAJU

Views: 219


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5746 (Print)
ISSN 1998-5754 (Online)