Preview

Humans and their health

Advanced search

Скорость окисления крови как предиктор развития фибрилляции предсердий в послеоперационном периоде при проведении шунтирования коронарных артерий

https://doi.org/10.21626/vestnik/2023-3/05

EDN: ZWNOMZ

Abstract

Развитие послеоперационной фибрилляции предсердий (ФП) связано с хирургической травмой, активацией нейтрофилов, высвобождением провоспалительных цитокинов и окислительным стрессом. Цель: оценка прогностической значимости определения скорости окисления крови в отношении риска развития фибрилляции предсердий в раннем послеоперационном периоде при проведении операции шунтирования коронарных артерий. Материал и методы. В исследование включены 68 больных стабильной ишемической болезнью сердца (ИБС), которым выполнена операция шунтирования коронарных артерий в условиях искусственного кровообращения (On-pump), параллельного искусственного кровообращения и на работающем сердце (Off-pump). Показатели индуцированного окисления крови изучались с помощью биологического кислородного монитора, определялась скорость окисления крови. Результаты. Установлено, что скорость окисления крови является значимым (p<0,05) компонентом, ассоциированным с развитием фибрилляции предсердий (r=0,90) при проведении хирургической реваскуляризации миокарда. По результатам логистического регрессионного анализа установлено, что скорость окисления крови оказывает влияние на развитие фибрилляции предсердий в послеоперационном периоде коронарного шунтирования. Выводы. Показатель скорости окисления крови является предиктором развития фибрилляции предсердий при проведении шунтирования коронарных артерий вне зависимости от выбранной методики хирургического вмешательства.

About the Authors

Марина Шерешнева
Ярославский государственный медицинский университет (ЯГМУ)
Russian Federation


Михаил Ильин
Ярославский государственный медицинский университет (ЯГМУ)
Russian Federation


Иван Староверов
Областная клиническая больница (ОКБ)
Russian Federation


References

1. Michniewicz E., Mlodawska E., Lopatowska P., Tomaszuk-Kazberuk A., Malyszko J. Patients with atrial fibrillation and coronary artery disease - Double trouble. Adv Med Sci. 2018;63(1):30-35. DOI: 10.1016/j.advms.2017.06.005.

2. Hidayet Ş., Yağmur J., Bayramoğlu A., Taşolar M. H., Kurtoğlu E., Özyalın F. Prediction of postoperative atrial fibrillation with left atrial mechanical functions and NT-pro ANP levels after coronary artery bypass surgery: A three-dimensional echocardiography study. Echocardiography (Mount Kisco, N.Y.). 2018;35(5):661-666. DOI: 10.1111/echo.13833.

3. Tyurina Y.Y., Tyurin V.A., Anthonymuthu T., Amoscato A.A., Sparvero L.J., Nesterova A.M., Baynard M.L., Sun W., et al. "Redox lipidomics technology: Looking for a needle in a haystack". Chem Phys Lipids. 2019;221:93-107. DOI: 10.1016/j.chemphyslip.2019.03.012.

4. Egea J., Fabregat I., Frapart Y.M., Ghezzi P., Görlach A., Kietzmann T., Kubaichuk K., Knaus U.G., et al. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol. 2017;13:94-162. DOI: 10.1016/j.redox.2017.05.007.

5. Larsen E.L., Weimann A., Poulsen H.E.Interventions targeted at oxidatively generated modifications of nucleic acids focused on urine and plasma markers. Free Radic Biol Med. 2019;145:256-283. DOI: 10.1016/j.freeradbiomed.2019.09.030.

6. Wayner D.D., Burton G.W., Ingold K.U., Locke S. Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett. 1985;187(1):33-37. DOI: 10.1016/0014-5793(85)81208-4.

7. Young I.S. Measurement of total antioxidant capacity. J Clin Pathol. 2001;54(5):339. DOI: 10.1136/jcp.54.5.339.

8. Chulkova A.S., Bondarenko E.T., Ilyin M.V. Kinetics of blood oxygen consumption in patients with atherosclerosis. Kursk Scientific and Practical Bulletin "Man and His Health". 2019;(2):74-79 (in Russ.). DOI: 10.21626/vestnik/2019-2/08. EDN: EDN: IFZOVJ.

9. Shereshneva M.V., Ilyin M.V., Sandugay A.V. Induced blood oxidation in patients with myocardial ischemia. Bulletin of the Ivanovo medical academy. 2021;26(3): 34-37 (in Russ.). DOI: 10.52246/1606-8157_2021_26_3_34. EDN: UERPHQ.

10. Werber J., Wang Y.J., Milligan M., Li X., Ji J.A. Analysis of 2,2'-azobis (2-amidinopropane) dihydrochloride degradation and hydrolysis in aqueous solutions. J Pharm Sci. 2011;100(8):3307-3315. DOI: 10.1002/jps.22578.

11. Todorov H., Janssen I., Honndorf S., Bause D., Gottschalk A., Baasner S., Volkert T., Faerber V., et al. Clinical significance and risk factors for new onset and recurring atrial fibrillation following cardiac surgery - a retrospective data analysis. BMC Anesthesiol. 2017;17(1):163. DOI: 10.1186/s12871-017-0455-7.

12. Goulden C.J., Hagana A., Ulucay E., Zaman S., Ahmed A., Harky A. Optimising risk factors for atrial fibrillation post-cardiac surgery. Perfusion. 2022;37(7):675-683. DOI: 10.1177/02676591211019319.

13. Farahani A.V., Omran A.S., Abbasi K., Gholamrezaei A., Mansouri P., Tafti S.H.A., Jahangiri M. Perioperative Cardiac Troponin T and Risk of Postoperative Atrial Fibrillation in Coronary Artery Bypass Graft Surgery. Crit Pathw Cardiol. 2022;21(1):36-41. DOI: 10.1097/HPC.0000000000000276.

14. Kievišas M., Keturakis V., Vaitiekūnas E., Dambrauskas L., Jankauskienė L., Kinduris Š. Prognostic factors of atrial fibrillation following coronary artery bypass graft surgery. Gen Thorac Cardiovasc Surg. 2017;65(10):566-574. DOI: 10.1007/s11748-017-0797-6.

15. Özsin K.K., Sanrı U.S., Toktaş F., Kahraman N., Yavuz Ş. Effect of Plasma Level of Vitamin D on Postoperative Atrial Fibrillation in Patients Undergoing Isolated Coronary Artery Bypass Grafting. Braz J Cardiovasc Surg. 2018;33(3):217-223. DOI: 10.21470/1678-9741-2017-0214.

16. Vidotti E., Vidotti L.F.K., Arruda Tavares C.A.G., Ferraz É.D.Z., Oliveira V., de Andrade A.G., Cardoso J.M.B., Cardoso M.H. Predicting postoperative atrial fibrillation after myocardial revascularization without cardiopulmonary bypass: A retrospective cohort study. J Card Surg. 2019;34(7):577-582. DOI: 10.1111/jocs.14088.

17. Taufiq F., Li P., Miake J., Hisatome I. Hyperuricemia as a Risk Factor for Atrial Fibrillation Due to Soluble and Crystalized Uric Acid. Circ Rep. 2019;1(11): 469-473. DOI: 10.1253/circrep.CR-19-0088.

18. Patel S.V., Gill H., Shahi D., Rajabalan A., Patel P., Sonani R., Bhatt P., Rodriguez R.D., et al. High risk for obstructive sleep apnea hypopnea syndrome predicts new onset atrial fibrillation after cardiac surgery: a retrospective analysis. Sleep Breath. 2018;22(4):1117-1124. DOI: 10.1007/s11325-018-1645-3.

19. Roger V.L. Epidemiology of Heart Failure: A Contemporary Perspective. Circ Res. 2021;128(10): 1421-1434. DOI: 10.1161/CIRCRESAHA.121.318172.

20. Ismail M.F., El-Mahrouk A.F., Hamouda T.H., Radwan H., Haneef A., Jamjoom A.A. Factors influencing postoperative atrial fibrillation in patients undergoing on-pump coronary artery bypass grafting, single center experience. J Cardiothorac Surg. 2017;12(1):40. DOI: 10.1186/s13019-017-0609-1.

21. Baeza-Herrera L.A., Rojas-Velasco G., Márquez-Murillo M.F., Portillo-Romero A.D.R., Medina-Paz L., Álvarez-Álvarez R., Ramos-Enríquez Á., et al. Atrial fibrillation in cardiac surgery. Arch Cardiol Mex. 2019;89(4):348-359. DOI: 10.24875/ACM.19000134.

22. Weymann A., Ali-Hasan-Al-Saegh S., Popov A.F., Sabashnikov A., Mirhosseini S.J., Liu T., Tse G., Lotfaliani M., et al. Haematological indices as predictors of atrial fibrillation following isolated coronary artery bypass grafting, valvular surgery, or combined procedures: a systematic review with meta-analysis. Kardiol Pol. 2018;76(1):107-118. DOI: 10.5603/KP.a2017.0179.

23. Pala A.A., Urcun Y.S. Is the Mean Platelet Volume a Predictive Factor for Atrial Fibrillation Developing After Coronary Artery Bypass Grafting in Elderly Patients? Heart Surg Forum. 2020;23(6):E809-E814. DOI: 10.1532/hsf.3201.

24. Weymann A., Popov A.F., Sabashnikov A., Ali-Hasan-Al-Saegh S., Ryazanov M., Tse G., Mirhosseini S.J., Liu T., et al. Baseline and postoperative levels of C-reactive protein and interleukins as inflammatory predictors of atrial fibrillation following cardiac surgery: a systematic review and meta-analysis. Kardiol Pol. 2018;76(2):440-451. DOI: 10.5603/KP.a2017.0242.

25. Korantzopoulos P., Letsas K., Fragakis N., Tse G., Liu T. Oxidative stress and atrial fibrillation: an update. Free Radic Res. 2018;52(11-12):1199-1209. DOI: 10.1080/10715762.2018.1500696.

26. Ren X., Wang X., Yuan M., Tian C., Li H., Yang X., Li X., Li Y., et al. Mechanisms and Treatments of Oxidative Stress in Atrial Fibrillation. Curr Pharm Des. 2018;24(26):3062-3071. DOI: 10.2174/1381612824666180903144042.

27. Dobrev D., Aguilar M., Heijman J., Guichard J.B., Nattel S. Postoperative atrial fibrillation: mechanisms, manifestations and management. Nat Rev Cardiol. 2019;16(7):417-436. DOI: 10.1038/s41569-019-0166-5.

28. Noubiap J.J., Sanders P., Nattel S,. Lau D.H. Biomarkers in Atrial Fibrillation: Pathogenesis and Clinical Implications. Card Electrophysiol Clin. 2021;13(1):221-233. DOI: 10.1016/j.ccep.2020.10.006.

29. Liang F., Wang Y. Coronary heart disease and atrial fibrillation: a vicious cycle. Am J Physiol Heart Circ Physiol. 2021;320(1):H1-H12. DOI: 10.1152/ajpheart.00702.2020.

30. Pauklin P., Zilmer M., Eha J., Tootsi K., Kals M., Kampus P. Markers of Inflammation, Oxidative Stress, and Fibrosis in Patients with Atrial Fibrillation. Oxid Med Cell Longev. 2022;2022:4556671. DOI: 10.1155/2022/4556671.

31. Samman Tahhan A., Sandesara P.B., Hayek S.S., Alkhoder A., Chivukula K., Hammadah M., Mohamed-Kelli H., O'Neal W.T., et al. Association between oxidative stress and atrial fibrillation. Heart Rhythm. 2017;14(12):1849-1855. DOI: 10.1016/j.hrthm.2017.07.028.

32. Li X.Y., Hou H.T., Chen H.X., Liu X.C., Wang J., Yang Q., He G.W. Preoperative plasma biomarkers associated with atrial fibrillation after coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2021;162(3):851-863.e3. DOI: 10.1016/j.jtcvs.2020.01.079.

33. Ramlawi B., Otu H., Mieno S., Boodhwani M., Sodha N.R., Clements R.T., Bianchi C., Sellke F.W. Oxidative stress and atrial fibrillation after cardiac surgery: a case-control study. Ann Thorac Surg. 2007;84(4):1166-1172. DOI: 10.1016/j.athoracsur.2007.04.126.

34. Wu J.H., Marchioli R., Silletta M.G., Masson S., Sellke F.W., Libby P., Milne G.L., Brown N.J., et al. Oxidative Stress Biomarkers and Incidence of Postoperative Atrial Fibrillation in the Omega-3 Fatty Acids for Prevention of Postoperative Atrial Fibrillation (OPERA) Trial. J Am Heart Assoc. 2015;4(5):e001886. DOI: 10.1161/JAHA.115.001886.

35. Sagris M., Vardas E.P., Theofilis P., Antonopoulos A.S., Oikonomou E., Tousoulis D. Atrial Fibrillation: Pathogenesis, Predisposing Factors, and Genetics.Int J Mol Sci. 2021;23(1):6. DOI: 10.3390/ijms23010006.

36. Mustroph J., Neef S., Maier L.S. CaMKII as a target for arrhythmia suppression. Pharmacol Ther. 2017;176:22-31. DOI: 10.1016/j.pharmthera.2016.10.006.

37. Aistrup G.L., Arora R., Grubb S., Yoo S., Toren B., Kumar M., Kunamalla A., Marszalec W., et al. Triggered intracellular calcium waves in dog and human left atrial myocytes from normal and failing hearts. Cardiovasc Res. 2017;113(13):1688-1699. DOI: 10.1093/cvr/cvx167.

38. Gussak G., Marszalec W., Yoo S., Modi R., O'Callaghan C., Aistrup G.L., Cordeiro J.M., Goodrow R., et al. Triggered Ca2+ Waves Induce Depolarization of Maximum Diastolic Potential and Action Potential Prolongation in Dog Atrial Myocytes. Circ Arrhythm Electrophysiol. 2020;13(6):e008179. DOI: 10.1161/CIRCEP.119.008179.

39. Yoo S., Aistrup G., Shiferaw Y., Ng J., Mohler P.J., Hund T.J., Waugh T., Browne S., et al. Oxidative stress creates a unique, CaMKII-mediated substrate for atrial fibrillation in heart failure. JCI Insight. 2018;3(21):e120728. DOI: 10.1172/jci.insight.120728.

40. Emren V., Aldemir M., Duygu H., Kocabaş U., Tecer E., Cerit L., Erdil N. Usefulness of HATCH score as a predictor of atrial fibrillation after coronary artery bypass graft. Kardiol Pol. 2016;74(8): 749-753. DOI: 10.5603/KP.a2016.0045.

41. Engin M., Aydın C. Investigation of the Effect of HATCH Score and Coronary Artery Disease Complexity on Atrial Fibrillation after On-Pump Coronary Artery Bypass Graft Surgery. Med Princ Pract. 2021;30(1):45-51. DOI: 10.1159/000508726.

42. Chen L., Du X., Dong J., Ma C.S. Performance and validation of a simplified postoperative atrial fibrillation risk score. Pacing Clin Electrophysiol. 2018;41(9):1136-1142. DOI: 10.1111/pace.13434.

43. Pezhouman A., Cao H., Fishbein M.C., Belardinelli L., Weiss J.N., Karagueuzian H.S. Atrial Fibrillation Initiated by Early Afterdepolarization-Mediated Triggered Activity during Acute Oxidative Stress: Efficacy of Late Sodium Current Blockade. J Heart Health. 2018;4(1):10.16966/2379-769X.146. DOI: 10.16966/2379-769X.146.

44. Zakkar M., Ascione R., James A.F., Angelini G.D., Suleiman M.S. Inflammation, oxidative stress and postoperative atrial fibrillation in cardiac surgery. Pharmacol Ther. 2015;154:13-20. DOI: 10.1016/j.pharmthera.2015.06.009.

45. Hueb W., Rezende P.C., Gersh B.J., Soares P.R., Favarato D., Lima E.G., Garzillo C.L., Jatene F.B., et al. Ten-Year Follow-Up of Off-Pump and On-Pump Multivessel Coronary Artery Bypass Grafting: MASS III. Angiology. 2019;70(4):337-344. DOI: 10.1177/0003319718804402.

46. Wang Y., Zhu S., Gao P., Zhou J., Zhang Q. Off-pump versus on-pump coronary surgery in patients with chronic kidney disease: a meta-analysis. Clin Exp Nephrol. 2018;22(1):99-109. DOI: 10.1007/s10157-017-1432-7.

47. Rubanenko O. A., Fatenkov O. V., Khokhlunov S. M. Atrial fibrillation in cardiovascular interventions in on-pump and off-pump regimens.Russ J Cardiol. 2015;20(11):13-17 (in Russ.). DOI: 10.15829/1560-4071-2015-11-13-17. EDN: UXWBOJ.

48. Anastasiadis K., Murkin J., Antonitsis P., Bauer A., Ranucci M., Gygax E., Schaarschmidt J., Fromes Y., et al. Use of minimal invasive extracorporeal circulation in cardiac surgery: principles, definitions and potential benefits. A position paper from the Minimal invasive Extra-Corporeal Technologies international Society (MiECTiS).Interact Cardiovasc Thorac Surg. 2016;22(5):647-662. DOI: 10.1093/icvts/ivv380.

49. Kowalewski M., Pawliszak W., Raffa G.M., Malvindi P.G., Kowalkowska M.E., Zaborowska K., Kowalewski J., Tarelli G., et al. Safety and efficacy of miniaturized extracorporeal circulation when compared with off-pump and conventional coronary artery bypass grafting: evidence synthesis from a comprehensive Bayesian-framework network meta-analysis of 134 randomized controlled trials involving 22 778 patients. Eur J Cardiothorac Surg. 2016;49(5):1428-1440. DOI: 10.1093/ejcts/ezv387.


Review

For citations:


 ,  ,   . Humans and their health. 2023;26(3):36-43. (In Russ.) https://doi.org/10.21626/vestnik/2023-3/05. EDN: ZWNOMZ

Views: 205


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5746 (Print)
ISSN 1998-5754 (Online)