Preview

Humans and their health

Advanced search

Pathogenetic mechanisms of damage to the cardiovascular system in new coronavirus infection (COVID-19)

https://doi.org/10.21626/vestnik/2022-4/02

Abstract

Objective of the study: to analyze and systematize the results of fundamental and clinical studies of recent years devoted to the study of the pathogenetic mechanisms of myocardial and coronary artery damage in patients who have undergone a new coronavirus infection (COVID-19). Materials and methods. The search for scientific information was carried out in domestic (E-Library) and foreign databases (PubMed, Scopus, Oxford University Press, Springer, Web of Science Core Collection). Results. It has been shown that the variety of cardiovascular system pathologies after a coronavirus infection is quite wide: heart failure, arrhythmias, sudden cardiac death, coronary heart disease, coronary microvascular dysfunction with coronary insufficiency, formation of coronary artery and aortic aneurysms, hypertension, labile heart rate and BP response to physical activity, acceleration of atherogenesis processes, venous and arterial thromboembolism. Cardiovascular pathology can develop both in patients after severe and moderate COVID-19, and in oligosymptomatic and asymptomatic individuals. Patients with emerging cardiovascular pathology in the acute period of coronavirus infection, as a rule, are under observation and in this situation changes in therapeutic strategies occur faster. Patients with newly diagnosed cardiovascular pathology after suffering COVID-19 need special attention and timely assessment to exclude or confirm cardiovascular complications. Conclusion. The presented data suggest that the tactics and strategy for the management of cardiovascular diseases in the post-covid period should be based on the timely and modern diagnosis of the onset or decompensation of cardiovascular pathology, competent, in accordance with current recommendations management of cardiovascular pathology with emphasis on the use of therapeutic interventions affecting the pathophysiological mechanisms of long covid.

References

1. Wu Z., Mc Googan J. M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323(13): 1239-1242. DOI: 10.1001/jama.2020.2648.

2. Ayoubkhani D., Khunti K., Nafilyan V., Maddox T., Humberstone B., Diamond I., Banerjee A. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study. BMJ. 2021;372:n693. DOI: 10.1136/bmj.n693.

3. Katsoularis I., Fonseca-Rodríguez O., Farrington P., Lindmark K., Fors Connolly A. M. Risk of acute myocardial infarction and ischaemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet. 2021;398(10300):599-607. DOI: 10.1016/S0140-6736(21)00896-5.

4. Huang C., Huang L., Wang Y., Li X., Ren L., Gu X., Kang L., Guo L., et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397(10270):220-232. DOI: 10.1016/S0140-6736(20)32656-8.

5. Guzik T.J., Mohiddin S.A., Dimarco A., Patel V., Savvatis K., Marelli-Berg F.M., Madhur M.S., Tomaszewski M., et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020;116(10):1666-1687. DOI: 10.1093/cvr/cvaa106.

6. Zhou P., Yang X. L., Wang X. G., Hu B., Zhang L., Zhang W., Si H. R., Zhu Y., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. DOI: 10.1038/s41586-020-2012-7.

7. Kuczyńska K., Zawilska Jolanta B., Badura J., Strehl B. Wirus SARS-CoV-2: pochodzenie, budowa i cykl replikacyjny, Farmacja Polska. 2021;77(3): 143-149. DOI: 10.32383/farmpol/135222. (in Pol.)

8. Song W., Gui M., Wang X., Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 2018;14(8):e1007236. DOI: 10.1371/journal.ppat.1007236.

9. Engelen M. M., Vandenbriele C., Balthazar T., Claeys E., Gunst J., Guler I., Jacquemin M., Janssens S., et al. Venous Thromboembolism in Patients Discharged after COVID-19 Hospitalization. Semin Thromb Hemost. 2021 Jun;47(4):362-371. DOI: 10.1055/s-0041-1727284.

10. Peter L., Thomas L. COVID-19 is, in the end, an endothelial disease. European Heart Journal. 2020;41(32)3038-3044. DOI: 10.1093/eurheartj/ehaa623.

11. Aird W.C. Endothelium. In: Kitchens C. S., Kessler C. M., Konkle B. A., editors. Consultative Hemostasis and Thrombosis. 3rd ed. Philadelphia. PA: W.B. Saunders; 2013:33-41.

12. Rey-Gallardo A., Tomlins H., Joachim J., Rahman I., Kitscha P., Frudd K., Parsons M., Ivetic A. Sequential binding of ezrin and moesin to L-selectin regulates monocyte protrusive behaviour during transendothelial migration. J Cell Sci. 2018;131(13):jcs215541. DOI: 10.1242/jcs.215541.

13. Quillard T., Araújo H.A., Franck G., Shvartz E., Sukhova G., Libby P. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J. 2015;36(22):1394-404. DOI: 10.1093/eurheartj/ehv044.

14. Шадрина А.С., Плиева Я.З., Кушлинский Д.Н., Морозов А.А., Филипенко М.Л., Чанг В.Л., Кушлинский Н.Е. Классификация, регуляция активности, генетический полиморфизм матриксных металлопротеиназ в норме и при патологии. Альманах клинической медицины. 2017;45(4):266-279. DOI: 10.18786/2072-0505-2017-45-4-266-279

15. Cyr A. R., Huckaby L. V., Shiva S. S., Zuckerbraun B. S. Nitric Oxide and Endothelial Dysfunction. Crit Care Clin. 2020;36(2):307-321. DOI: 10.1016/j.ccc.2019.12.009.

16. Sharma A., Garcia G. Jr., Wang Y., Plummer J.T., Morizono K., Arumugaswami V., Svendsen C.N. Human iPSC-Derived cardiomyocytes are susceptible to SARS-CoV-2 infection. Cell Rep Med. 2020;1(4):100052. DOI: 10.1016/j.xcrm.2020.100052.

17. Голота А.С., Камилова Т.А., Шнейдер О.В., Вологжанин Д.А., Щербак С.Г. Патогенез начальных стадий тяжелой формы COVID-19. Клиническая практика. 2021;12(2):83-102. DOI: 10.17816/clinpract71351.

18. Gheblawi M., Wang K., Viveiros A., et al. Angiotensin-con-verting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res. 2020;126(10):1456-1474. DOI: 10.1161/CIRCRESAHA.120.317015.

19. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T. S., Herrler G., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2): 271-280.e8. DOI: 10.1016/j.cell.2020.02.052.

20. Коган Е.А., Березовский Ю.С., Благова О.В., Куклева А.Д., Богачева Г.А., Курилина Э.В., Калинин Д.В., Багдасарян Т.Р., и др. Миокардит у пациентов с COVID-19, подтвержденный результатами иммуногистохимического исследования. Кардиология. 2020;60(7):4-10. DOI: 10.18087/cardio.2020.7.n1209.

21. Сережина Е.К., Обрезан А.Г. Патофизиологические механизмы и нозологические формы сердечно-сосудистой патологии при COVID-19. Кардиология. 2020;60(8):23-26. DOI: 10.18087/cardio.2020.8.n1215.

22. Bhatla A., Mayer M. M., Adusumalli S., Hyman M. C., Oh E., Tierney A., Moss J., Chahal A. A., et al. COVID-19 and cardiac arrhythmias. Heart Rhythm. 2020;17(9):1439-1444. DOI: 10.1016/j.hrthm.2020.06.016.

23. Gawałko M., Kapłon-Cieślicka A., Hohl M., Dobrev D., Linz D. COVID-19 associated atrial fibrillation: Incidence, putative mechanisms and potential clinical implications.Int J Cardiol Heart Vasc. 2020;30:100631. DOI: 10.1016/j.ijcha.2020.100631.

24. Chen C., Zhou Y., Wang D. W. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz. 2020;45(3):230-232. DOI: 10.1007/s00059-020-04909-z.

25. Dani M., Dirksen A., Taraborrelli P., Torocastro M., Panagopoulos D., Sutton R., Lim P.B. Autonomic dysfunction in 'long COVID': rationale, physiology and management strategies. Clin Med (Lond). 2021;21(1):e63-e67. DOI: 10.7861/clinmed.2020-0896.

26. Бубнова М.Г., Аронов Д.М. COVID-19 и сердечно-сосудистые заболевания: от эпидемиологии до реабилитации. Пульмонология. 2020;30(5):688-699. DOI: 10.18093/0869-0189-2020-30-5-688-699.

27. Blagova O., Ainetdinova D.H. Lutokhina Y.A., Novosadov V.M., Rud' R.S., Zaitsev A.Y.U., Kukleva A.D., Alexandrova S.A., et al. Post-COVID myocarditis diagnosed by endomyocardial biopsy and/or magnetic resonance imaging 2-9 months after acute COVID-19. European Heart Journal. 2021;42:ehab724.1751. DOI: 10.1093/eurheartj/ehab724.1751.

28. Благова О.В., Коган Е.А., Лутохина Ю.А., Куклева А.Д., Айнетдинова Д.Х., Новосадов В.М., Рудь Р.С., Зайцев А.Ю., и др. Постковидный миоэндокардит подострого и хронического течения: клинические формы, роль персистенции коронавируса и аутоиммунных механизмов. Кардиология. 2021;61(6):11-27. DOI: 10.18087/cardio.2021.6.n1659.

29. Siripanthong B., Nazarian S., Muser D., Deo R., Santangeli P., Khanji M.Y., Cooper L.T. Jr., Chahal C.A.A. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020;17(9):1463-1471. DOI: 10.1016/j.hrthm.2020.05.001.

30. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. DOI: 10.1001/jama.2020.1585.

31. Kotecha T., Knight D. S., Razvi Y., Kumar K., Vimalesvaran K., Thornton G., Patel R., Chacko L., et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur Heart J. 2021;42(19):1866-1878. DOI: 10.1093/eurheartj/ehab075.

32. Puntmann V. O., Carerj M. L., Wieters I., Fahim M., Arendt C., Hoffmann J., Shchendrygina A., Escher F., et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265-1273. DOI: 10.1001/jamacardio.2020.3557.

33. Moulson N., Petek B.J., Drezner J.A., Harmon K.G., Kliethermes S.A., Patel M.R., Baggish A.L. Outcomes Registry for Cardiac Conditions in Athletes Investigators. SARS-CoV-2 Cardiac Involvement in Young Competitive Athletes. Circulation. 2021Jul27;144(4):256-266. DOI: 10.1161/CIRCULATIONAHA.121.054824.

34. Zheng Y. Y., Ma Y. T., Zhang J. Y., Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259-260. DOI: 10.1038/s41569-020-0360-5.

35. Guo T., Fan Y., Chen M., Wu X., Zhang L., He T., Wang H., Wan J., et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7): 811-818. DOI: 10.1001/jamacardio.2020.1017.

36. Шляхто Е.В., Пармон Е.В., Бернгардт Э.Р., Жабина Е.С. Особенности электрокардиографических изменений при некоронарогенных синдромах у пациентов с COVID-19. Российский кардиологический журнал. 2020;25(7):4019. DOI: 10.15829/1560-4071-2020-4019.

37. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. DOI: 10.1016/S0140-6736(20)30566-3. Arentz M., Yim E., Klaff L., Lokhandwala S., Riedo F.X., Chong M., Lee M. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020;323(16):1612-1614. DOI: 10.1001/jama.2020.4326.

38. Li S. S., Cheng C. W., Fu C. L., Chan Y. H., Lee M. P., Chan J. W., Yiu S. F. Left ventricular performance in patients with severe acute respiratory syndrome: a 30-day echocardiographic follow-up study. Circulation. 2003;108(15):1798-1803. DOI: 10.1161/01.CIR.0000094737.21775.32.

39. Argulian E., Sud K., Vogel B., Bohra C., Garg V. P., Talebi S., Lerakis S., Narula J. Right Ventricular Dilation in Hospitalized Patients With COVID-19 Infection. JACC Cardiovasc Imaging. 2020;13(11):2459-2461. DOI: 10.1016/j.jcmg.2020.05.010.

40. Hendren N.S., Drazner M.H., Bozkurt B., Cooper L.T. Jr. Description and Proposed Management of the Acute COVID-19 Cardiovascular Syndrome. Circulation. 2020;141(23):1903-1914. DOI: 10.1161/CIRCULATIONAHA.120.047349.

41. Chilazi M., Duffy E.Y., Thakkar A., Michos E.D. COVID and Cardiovascular Disease: What We Know in 2021. Curr Atheroscler Rep. 2021;23(7):37. DOI: 10.1007/s11883-021-00935-2.

42. Klok F.A., Kruip M.J.H. A., van der Meer N.J.M., Arbous M.S., Gommers D.A.M.P.J., Kant K.M., Kaptein F.H.J., van Paassen J., et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145-147. DOI: 10.1016/j.thromres.2020.04.013.

43. Patell R., Bogue T., Koshy A., Bindal P., Merrill M., Aird W.C., Bauer K.A., Zwicker J.I. Postdischarge thrombosis and hemorrhage in patients with COVID-19. Blood. 2020;136(11):1342-1346. DOI: 10.1182/blood.2020007938.

44. Gibson C. M., Halaby R., Korjian S., Daaboul Y., Arbetter D. F., Yee M. K., Goldhaber S. Z., Hull R., et al. The safety and efficacy of full- versus reduced-dose betrixaban in the Acute Medically Ill VTE (Venous Thromboembolism) Prevention With Extended-Duration Betrixaban (APEX) trial. Am Heart J. 2017;185:93-100. DOI: 10.1016/j.ahj.2016.12.004.

45. Goldhaber S.Z., Leizorovicz A., Kakkar A.K., Haas S.K., Merli G., Knabb R. M., Weitz J. I. ADOPT Trial Investigators. Apixaban versus enoxaparin for thromboprophylaxis in medically ill patients. N Engl J Med. 2011;365(23):2167-2177. DOI: 10.1056/NEJMoa1110899.

46. Dorward D. A., Russell C. D., Um I. H., Elshani M., Armstrong S. D., Penrice-Randal R., Millar T., Lerpiniere C.E.B., et al. Tissue-Specific Immunopathology in Fatal COVID-19. Am J Respir Crit Care Med. 2021;203(2):192-201. DOI: 10.1164/rccm.202008-3265OC.

47. Raj S. R., Arnold A. C., Barboi A., Claydon V. E., Limberg J. K., Lucci V. M., Numan M., Peltier A., et al. Long-COVID postural tachycardia syndrome: an American Autonomic Society statement. Clin Auton Res. 2021;31(3):365-368. DOI: 10.1007/s10286-021-00798-2.


Review

For citations:


Stepchenko A.A., Gnezdilova E.S., Stepchenko M.A., Trigub A.V. Pathogenetic mechanisms of damage to the cardiovascular system in new coronavirus infection (COVID-19). Humans and their health. 2022;25(4):11-20. (In Russ.) https://doi.org/10.21626/vestnik/2022-4/02

Views: 353


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5746 (Print)
ISSN 1998-5754 (Online)