Functional and clinical morphology of Virchow-Robin spaces: from the discovery up to the newest theories
https://doi.org/10.21626/vestnik/2022-2/07
Abstract
Morphology of cerebrospinal fluid flow structures in CNS is an important and complex area of research and is associated with the problems of metabolites transport, including pathological ones in neurodegenerative pathology, e.g., Alzheimer's disease. Since Virchow and Robin first described the perivascular spaces in the 19th century, their role in the transport of cerebrospinal fluid and intracerebral metabolites has been established. On the grounds of the 20th century studies, a modern theory of intracerebral liquor transport of metabolites, the glymphatic system theory, has emerged, creating the basis for new areas of treatment of neurodegenerative diseases. The article presents an overview of the history of description and study of CNS perivascular transport pathways, terminology issues and clinical problems such as amyloid transport and its disruption as a mechanism of Alzheimer's disease and glaucoma. We present our own descriptive data on the morphology of the perivascular spaces (PVS) of the rat brain in normal and simulated glaucoma-like increases in intraocular pressure. Structures corresponding to perivascular spaces (PVS) in their original description are present in the rat brain along arteries and arterioles. They are represented by intervals between the medium and adventitia, in the adventitia, and between the adventitia and the inner pial fibrous layers. At the level of capillaries they are closed. In the venous link there are only paravenular spaces between the vascular wall and glial boundary membrane. Periarterial-like leptomeningeal structures and spaces are absent. In glaucoma-like experimental increase in intraocular pressure, the periarterial spaces respond with expansion, and in addition to them, intermyocyte spaces are formed in the medium On the basis of glymphatic theory we propose the possibility of regulation of intracerebral metabolic transport and hydrodynamic system”eye - optic nerve -brain” via vascular mechanisms of perivascular transport.
About the Authors
Aleksandr A. DolzhikovRussian Federation
Ol’ga A. Shevchenko
Russian Federation
Assistant of the Department Microbiology and Virology, NRU BelSU, Belgorod, Russian Federation
Anna S. Pobeda
Russian Federation
Irina N. Dolzhikova
Russian Federation
References
1. Fridman A.P. Fundamentals of liquorology (the doctrine of cerebral fluid). 5th ed, reprocessed and suppl. Leningrad: Meditsina, 1971. 328 p. (in Russ.)
2. Zadvornov A.A., Golomidov A.V., Grigoriev E.V. Clinical pathophysiology of cerebral edema (part 2). Messenger of anesthesiology and resuscitation. 2017;14(4):52-60 (in Russ.). DOI: 10.21292/2078-5658-2017-14-4-52-60. EDN: ZDIHBZ
3. Kvitnitskiy-Ryzhov Yu.N. Morphological characteristics of edema and swelling of the brain. Arkhiv patologii.1960;22(7):52-60 (in Russ.)
4. Alov I.A. About the movement of cerebrospinal fluid through the brain in perivascular spaces. Voprosy neyrokhirurgii. 1950;14(6):12 (in Russ.)
5. Kvitnitskiy-Ryzhov Yu.N. Edema and swelling of the brain. Kiev: Zdorovʼya, 1978. 184 p. (in Russ.)
6. Baron M.A., Mayorova N.A. Functional stereomorphology of the meninges: Atlas. Moscow: Meditsina; 1982. 352 p. (in Russ.)
7. Samusev R.P. Human anatomy in eponyms. Directory. Moscow : LLC «Izdatel’stvo Oniks», LLC «Izdatel’stvo Mir i Obrazovaniye», 2007. 656 p. (in Russ.)
8. Iliff J.J., Wang M., Liao Y., Plogg B.A., Peng W., Gundersen G.A., Benveniste H., Vates G.E. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. DOI: 10.1126/scitranslmed.3003748
9. Adeeb N., Mortazavi M.M., Deep A., Griessenauer C.J., Watanabe K., Shoja M.M., Loukas M., Tubbs R.S. The pia mater: a comprehensive review of literature. Childs Nerv Syst. 2013;29(10):1803-1810. DOI: 10.1007/s00381-013-2044-5
10. Virchow R. Uber die Erweiterung kleinerer Gefässe. Archiv Pathol Anat Physiol Klin Med. 1851;3:427-462
11. Robin C. Recherches sur quelques particularités de la structure des capillaires de l'encéphale. J Physiol. 1859;2:537-548
12. Nikolenko V.N., Oganesyan M.V., Yakhno N.N., Orlov E.A., Porubayeva E.E., Popova E.Yu. The brain's glymphatic system: physiological anatomy and clinical perspectives. Neurology, Neuropsychiatry, Psychosomatics. 2018;10(4):94-100 (in Russ.). DOI: 10.14412/2074-2711-2018-4-94-100. EDN: YPVCQX
13. Samusev R.P. Human anatomy and histology. Encyclopedic Dictionary. Moscow: ZIPOL Klassik, 2008. 784 p. (in Russ.)
14. Samusev R.P. Human anatomy in eponyms. Directory. Moscow : LLC «Izdatel’stvo Oniks», LLC «Izdatel’stvo Mir i Obrazovaniye», 2007. 656 p. (in Russ.)
15. Krstich R.V. Illustrated Encyclopedia of Human Histology. Samusev R.P., Kapitonova M.Yu., translators; Samusev R.P., editor. St. Petersburg: SOTIS, 2001. 531 p.
16. Petrukhin A.S. Pediatric Neurology : Vol. 1: Textbook: in 2 vol. Moscow: GEOTAR-Media, 2018. 272 p. (in Russ.)
17. Voino-Yasenetsky MV, Zhabotinsky YuM. Sources of errors in morphological studies. Leningrad: Meditsina, 1970. 319 p. (in Russ.)
18. Erichev V.P., Egorov E.A. On pathogenesis of primary open-angle glaucoma. The Russian annals of ophthalmology. 2014;130(6): 98-105 (in Russ.). EDN: THPQVB
19. Dolzhikov A.A., Pobeda A.S., Shevchenko O.A., Dolzhikova I.N. Morphofunctional changes in the retina when modeling the glaucoma process in rats. Research Results in Biomedicine. 2020;6(4):503-514 (in Russ.). DOI: 10.18413/2658-6533-2020-6-4-0-6. EDN: YMMHIY
20. Valchuk S.N., Alekseev D.E., Gavrilov G.V., Stanishevskiy A.V., Svistov D.V. Circulation and resorption of cerebrospinal fluid: historic and up-to-date presentation. Bulletin of the Russian Military Medical Academy. 2018;2(62):215-220 (in Russ.). EDN: XRZFAL
21. Zhang E.T., Inman C.B., Weller R.O.Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat. 1990;170:111-123
22. Bradbury M.W., Cserr H.F., Westrop R.J. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol. 1981;240(4):F329-336. DOI: 10.1152/ajprenal.1981.240.4.F329
23. Criswell T.P., Sharp M.M., Dobson H., Finucane C., Weller R.O., Verma A., Carare R.O. The structure of the perivascular compartment in the old canine brain: a case study. Clin Sci (Lond). 2017;131(22): 2737-2744. DOI: 10.1042/CS20171278
24. Kvitnitskiy-Ryzhov Yu.N. About the perivascular spaces of the brain. Arkhiv anatomii, gistologii i embriologii. 1968;55(12):3-16 (in Russ.)
25. Kvitnitskiy-Ryzhov Yu.N. The problem of edema and swelling of the brain (Review of the literature over the past decade). Zhurnal nevropatologii i psikhiatrii im. S.S. Korsakova. 1968;55(12):3-16 (in Russ.)
26. Dolzhikov A.A., Shevchenko O.A., Pobeda A.S., Peresypkina A.A., Dolzhikova I.N., Zhunusov N.S., Lugovskoy S.S. Review of a new concept of glaucoma pathogenesis based on the glymphatic theory of cerebrospinal uid circulation. Research Results in Pharmacology. 2020;6(3):1-7. DOI: 10.3897/rrpharmacology.6.53634
27. Valenti R. Cerebral Small Vessel Disease and Cerebral Amyloid Angiopathy: neuroimaging markers, cognitive features and rehabilitative issues. Firenze: Firenze University Press, 2018. 181 p.
28. Potter G.M., Doubal F.N., Jackson C.A., Chappell F.M., Sudlow C.L., Dennis M.S., Wardlaw J.M. Enlarged perivascular spaces and cerebral small vessel disease.Int J Stroke. 2015;10(3):376-381. DOI: 10.1111/ijs.12054
29. Mercieca K., Cain J., Hansen T., Steeples L., Watkins A., Spencer F., Jackson A. Primary Open Angle Glaucoma is Associated with MR Biomarkers of Cerebral Small Vessel Disease. Sci Rep. 2016;6:22160. DOI: 10.1038/srep22160
30. Wostyn P., De Groot V., Van Dam D., Audenaert K., Killer H.E., De Deyn P.P. Dilated Virchow-Robin spaces in primary open-angle glaucoma: a biomarker of glymphatic waste clearance dysfunction? Acta Radiol Open. 2016;5(8):2058460116653630. DOI: 10.1177/2058460116653630
31. Chen W., Song X., Zhang Y., Alzheimer's Disease Neuroimaging Initiative. Assessment of the Virchow-Robin Spaces in Alzheimer disease, mild cognitive impairment, and normal aging, using high-field MR imaging. AJNR Am J Neuroradiol. 2011;32(8): 1490-1495. DOI: 10.3174/ajnr.A2541
32. Lobzin V.Yu., Kolmakova K.A., Emelin A.Yu., Lapina A.V. Glymphatic brain system and its role in pathogenesis of Alzheimer’s disease. Bulletin of the Russian Military Medical Academy. 2019;1(65):230-236 (in Russ.). EDN: ZAFSVV
Review
For citations:
Dolzhikov A.A., Shevchenko O.A., Pobeda A.S., Dolzhikova I.N. Functional and clinical morphology of Virchow-Robin spaces: from the discovery up to the newest theories. Humans and their health. 2022;25(2):70-82. (In Russ.) https://doi.org/10.21626/vestnik/2022-2/07