Preview

Humans and their health

Advanced search

On mechanisms of increased intestinal wall permeability under stress

https://doi.org/10.21626/vestnik/2022-2/05

Abstract

One of the manifestations of the stress reaction in the colon is an increase in the permeability of its wall due to the development of an inflammatory reaction against the background of changes in neuroendocrine regulation and microbiota state. These processes are accompanied by significant changes in humoral homeostasis and cell activity involved in the development of an inflammatory response in the colon wall. We performed a literature review to analyze and summarize the available research data on the mechanisms of stress-induced changes in the intestine at the molecular, cellular and tissue levels involving the regulatory systems of the body. Scientific information was searched in Web Of Science, Scopus, ScienceDirect, Medline, Russian Science Citation Index (RSCI), as well as in the search engines Google Scholar, PubMed, Semantic Scholar, Taylor & Francis, Wiley Online Library and Bielefeld Academic Search Engine (BASE). Wall permeability has been shown to have a rather complex regulation involving corticotropin-releasing factor, mast cells, dendritic cells, eosinophils, macrophages, Substance P, nerve growth factor, neurotensin, microbiota metabolic factors (serotonin, short-chain fatty acids, indole derivatives and conjugated fatty acids), epigenetic mechanisms, the HES1 (Hairy/Enhancer of Split-1) - GR (glucocorticoid receptor), and the stress-associated polarity signaling pathway. Under stress, there is a change in the functioning of these mechanisms, leading to an increase in the permeability of the intestinal wall. It results in translocation of bacteria from the lumen into the underlying layers which causes activation of the immune response with subsequent development of an inflammatory reaction. The presented data testify to the prospects and validity of the development of methods of correction of stress-induced shifts in the colon by influencing the central and local mechanisms of realization of the stress response and the state of the microbiota.

References

1. Bailey M.T., Dowd S.E., Galley J.D., Hufnagle A.R., Allen R.G., Lyte M. Exposure to a Social Stressor Alters the Structure of the Intestinal Microbiota: Implications for Stressor-Induced Immunomodulation. Brain Behav Immun. 2011;25(3):397. DOI: 10.1016/j.bbi.2010.10.023

2. Saunders P.R., Hanssen N.P., Perdue M.H. Cholinergic nerves mediate stress-induced intestinal transport abnormalities in Wistar-Kyoto rats. Am J Physiol Gastrointest Liver Physiol. 1997;273(2):G486-490. DOI: 10.1152/ajpgi.1997.273.2.G486

3. Kim Y.S., Lee M.Y., Ryu H.S., Choi E.-S., Oh J.T., Yun K.J., Choi S.C. Regional differences in chronic stress-induced alterations in mast cell and protease-activated receptor-2-positive cell numbers in the colon of Ws/Ws rats. J Neurogastroenterol Motil. 2014;20(1):54-63. DOI: 10.5056/jnm.2014.20.1.54

4. Soderholm J.D., Perdue M.H. II. Stress and intestinal barrier function. Am J Physiol Gastrointest Liver Physiol. 2001;280(1):G7-13. DOI: 10.1152/ajpgi.00337.2005

5. Chen H.-Q., Yang J., Zhang M., Zhou Y.-K., Shen T.-Y., Chu Z.-X., Zhang M., Hang X.-M. et al. Lactobacillus plantarum ameliorates colonic epithelial barrier dysfunction by modulating the apical junctional complex and PepT1 in IL-10 knockout mice. Am J Physiol Gastrointest Liver Physiol. 2010;299(6):G1287-1297. DOI: 10.1152/ajpgi.00196.2010

6. Su L., Shen L., Clayburgh D.R., Nalle S.C., Sullivan E.A., Meddings J.B., Abraham C., Turner J.R. Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology. 2009;136(2):551-563. DOI: 10.1053/j.gastro.2008.10.081

7. Wells J.M., Brummer R.J., Derrien M., MacDonald T.T., Troost F., Cani P.D., Theodorou V., Dekker J. et al. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol. 2016;312(3):G171-193. DOI: 10.1152/ajpgi.00048.2015

8. Choi W., Yeruva S., Turner J.R. Contributions of intestinal epithelial barriers to health and disease. Exp Cell Res. 2017;358(1):71-77. DOI: 10.1016/j.yexcr.2017.03.036. URL: https://www.sciencedirect.com/science/article/pii/S001448271730157X

9. Van Spaendonk H., Ceuleers H., Witters L., Patteet E., Joossens J., Augustyns K., Lambeir A.-M., De Meester I. et al. Regulation of intestinal permeability: The role of proteases. World J Gastroenterol. 2017;23(12):2106-2123. DOI: 10.3748/wjg.v23.i12.2106

10. Wells J.M., Brummer R.J., Derrien M., MacDonald T.T., Troost F., Cani P.D., Theodorou V., Dekker J. et al. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol. 2016;312(3):G171-193. DOI: 10.1152/ajpgi.00048.2015

11. Van Spaendonk H., Ceuleers H., Witters L., Patteet E., Joossens J., Augustyns K., Lambeir A.-M., De Meester I. et al. Regulation of intestinal permeability: The role of proteases. World J Gastroenterol. 2017;23(12):2106-2123. DOI: 10.3748/wjg.v23.i12.2106

12. Odenwald M.A., Turner J.R. The intestinal epithelial barrier: a therapeutic target? Nat Rev Gastroenterol Hepatol. 2017;14(1):9-21. DOI: 10.1038/nrgastro.2016.169

13. Lightman S.L. The Neuroendocrinology of Stress: A Never Ending Story. J Neuroendocrinol. 2008;20(6):880-884. DOI: 10.1111/j.1365-2826.2008.01711.x

14. Fekete É.M., Zorrilla E.P. Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: Ancient CRF paralogs. Front Neuroendocrinol. 2007;28(1):1-27. DOI: 10.1016/j.yfrne.2006.09.002. URL: https://www.sciencedirect.com/science/article/pii/S0091302206003773

15. Stengel A., Taché Y. Neuroendocrine Control of the Gut During Stress: Corticotropin-Releasing Factor Signaling Pathways in the Spotlight. Annu Rev Physiol. 2009;71(1):219-239. DOI: 10.1146/annurev.physiol.010908.163221

16. Karalis K., Sano H., Redwine J., Listwak S., Wilder R.L., Chrousos G.P. Autocrine or paracrine inflammatory actions of corticotropin-releasing hormone in vivo. Science. 1991;254(5030):421-423. DOI: 10.1126/science.1925600

17. Liu S., Gao N., Hu H.-Z., Wang X., Wang G.-D., Fang X., Gao X., Xia Y. et al. Distribution and chemical coding of corticotropin-releasing factor-immunoreactive neurons in the guinea pig enteric nervous system. J Comp Neurol. 2006;494(1):63-74. DOI: 10.1002/cne.20781

18. Fekete É.M., Zorrilla E.P. Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: Ancient CRF paralogs. Front Neuroendocrinol. 2007;28(1):1-27. DOI: 10.1016/j.yfrne.2006.09.002

19. Hillhouse E.W., Grammatopoulos D.K. The Molecular Mechanisms Underlying the Regulation of the Biological Activity of Corticotropin-Releasing Hormone Receptors: Implications for Physiology and Pathophysiology. Endocr Rev. 2006;27(3):260-286. DOI: 10.1210/er.2005-0034

20. Markovic D., Lehnert H., Levine M.A., Grammatopoulos D.K. Structural Determinants Critical for Localization and Signaling within the Seventh Transmembrane Domain of the Type 1 Corticotropin Releasing Hormone Receptor: Lessons from the Receptor Variant R1d. Mol Endocrinol. 2008;22(11):2505-2519. DOI: 10.1210/me.2008-0177

21. Hauger R.L., Grigoriadis D.E., Dallman M.F., Plotsky P.M., Vale W.W., Dautzenberg F.M.International Union of Pharmacology. XXXVI. Current Status of the Nomenclature for Receptors for Corticotropin-Releasing Factor and Their Ligands. Pharmacol Rev. 2003;55(1):21-26. DOI: 10.1124/pr.55.1.3

22. Gutknecht E., Van der Linden I., Van Kolen K., Verhoeven K.F.C., Vauquelin G., Dautzenberg F.M. Molecular Mechanisms of Corticotropin-Releasing Factor Receptor-Induced Calcium Signaling. Mol Pharmacol. 2009;75(3):648-657. DOI: 10.1124/mol.108.050427. URL: http://molpharm.aspetjournals.org/content/75/3/648.abstract

23. Grossini E., Molinari C., Mary D.A.S.G., Uberti F., Ribichini F., Caimmi P.P., Vacca G. Urocortin II Induces Nitric Oxide Production Through cAMP and Ca2+ Related Pathways in Endothelial Cells. Cell Physiol Biochem. 2009;23(1-3):87-96. DOI: 10.1159/000204097

24. Hillhouse E.W., Grammatopoulos D.K. The Molecular Mechanisms Underlying the Regulation of the Biological Activity of Corticotropin-Releasing Hormone Receptors: Implications for Physiology and Pathophysiology. Endocr Rev. 2006;27(3):260-286. DOI: 10.1210/er.2005-0034

25. Black P.H. Stress and the inflammatory response: A review of neurogenic inflammation. Brain Behav Immun. 2002;16(6):622-653. DOI: 10.1016/s0889-1591(02)00021-1. URL: https://www.sciencedirect.com/science/article/pii/S0889159102000211

26. Saunders P.R., Santos J., Hanssen N.P.M., Yates D., Groot J.A., Perdue M.H. Physical and psychological stress in rats enhances colonic epithelial permeability via peripheral CRH. Dig Dis Sci. 2002;47(1):208-215. DOI: 10.1023/a:1013204612762

27. Santos J., Saunders P.R., Hanssen N.P.M., Yang P.-C., Yates D., Groot J.A., Perdue M.H. Corticotropin-releasing hormone mimics stress-induced colonic epithelial pathophysiology in the rat. Am J Physiol Gastrointest Liver Physiol. 1999;277(2):G391-399. DOI: 10.1152/ajpgi.1999.277.2.G391

28. Soderholm J.D., Yates D.A., Gareau M.G., Yang P.-C., MacQueen G., Perdue M.H. Neonatal maternal separation predisposes adult rats to colonic barrier dysfunction in response to mild stress. Am J Physiol Gastrointest Liver Physiol. 2002;283(6):G1257-1263. DOI: 10.1152/ajpgi.00314.2002

29. Barreau F., Cartier C., Leveque M., Ferrier L., Moriez R., Laroute V., Rosztoczy A., Fioramonti J. et al. Pathways involved in gut mucosal barrier dysfunction induced in adult rats by maternal deprivation: corticotrophin-releasing factor and nerve growth factor interplay. J Physiol. 2007;580(1): 347-356. DOI: 10.1113/jphysiol.2006.120907

30. Larauche M., Gourcerol G., Wang L., Pambukchian K., Brunnhuber S., Adelson D.W., Rivier J., Million M. et al. Cortagine, a CRF1 agonist, induces stresslike alterations of colonic function and visceral hypersensitivity in rodents primarily through peripheral pathways. Am J Physiol Gastrointest Liver Physiol. 2009;297(1):215-227. DOI: 10.1152/ajpgi.00072.2009

31. Gareau M.G., Jury J., Perdue M.H. Neonatal maternal separation of rat pups results in abnormal cholinergic regulation of epithelial permeability. Am J Physiol Gastrointest Liver Physiol. 2007;293(1):198-203. DOI: 10.1152/ajpgi.00392.2006

32. Yu Y., Liu Z.Q., Liu X.Y., Yang L., Geng X.R., Yang G., Liu Z.G., Zheng P.Y. et al. Stress-Derived Corticotropin Releasing Factor Breaches Epithelial Endotoxin Tolerance. PLoS One. 2013;8(6):e65760. DOI: 10.1371/journal.pone.0065760

33. Albert-Bayo M., Paracuellos I., González-Castro A.M., Rodríguez-Urrutia A., Rodríguez-Lagunas M.J., Alonso-Cotoner C., Santos J., Vicario M.Intestinal Mucosal Mast Cells: Key Modulators of Barrier Function and Homeostasis. Cells. 2019;8(2):135. DOI: 10.3390/cells8020135

34. Wernersson S., Pejler G. Mast cell secretory granules: armed for battle. Nat Rev Immunol. 2014;14(7): 478-494. DOI: 10.1038/nri3690

35. Bischoff S.C. Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat Rev Immunol. 2007;7(2):93-104. DOI: 10.1038/nri2018

36. Traina G. The role of mast cells in the gut and brain. J Integr Neurosci. 2021;20(1):185-196. DOI: 10.31083/j.jin.2021.01.313

37. Cao J., Papadopoulou N., Kempuraj D., Boucher W.S., Sugimoto K., Cetrulo C.L., Theoharides T.C. Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. J Immunol. 2005;174(12):7665-7675. DOI: 10.4049/jimmunol.174.12.7665

38. Smith F., Clark J.E., Overman B.L., Tozel C.C., Huang J.H., Rivier J.E.F., Blisklager A.T., Moeser A.J. Early weaning stress impairs development of mucosal barrier function in the porcine intestine. Am J Physiol Gastrointest Liver Physiol. 2010;298(3): G352-363. DOI: 10.1152/ajpgi.00081.2009

39. Stead R.H., Dixon M.F., Bramwell N.H., Riddell R.H., Bienenstock J. Mast cells are closely apposed to nerves in the human gastrointestinal mucosa. Gastroenterology. 1989;97(3):575-585. DOI: 10.1016/0016-5085(89)90627-6

40. Barbara G., Stanghellini V., De Giorgio R., Cremon C., Cottrell G.S., Santini D., Pasquinelli G., Morselli-Labate A.M. et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology. 2004;126(3):693-702. DOI: 10.1053/j.gastro.2003.11.055

41. Buhner S., Schemann M. Mast cell-nerve axis with a focus on the human gut. Biochim Biophys Acta. 2012;1822(1):85-92. DOI: 10.1016/j.bbadis.2011.06.004

42. Dong H., Zhang X., Wang Y., Zhou X., Qian Y., Zhang S. Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. Mol Neurobiol. 2017;54(2):997-1007. DOI: 10.1007/s12035-016-9720-x

43. Carabotti M., Scirocco A., Maselli M.A., Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203-209.

44. Traina G. Mast cells in the brain - Old cells, new target. J Integr Neurosci. 2017;16(s1):S69-83. DOI: 10.3233/JIN-170068

45. Santos J., Yates D., Guilarte M., Vicario M., Alonso C., Perdue M.H. Stress neuropeptides evoke epithelial responses via mast cell activation in the rat colon. Psychoneuroendocrinology. 2008;33(9):1248-1256. DOI: 10.1016/j.psyneuen.2008.07.002

46. Wallon C., Persborn M., Jönsson M., Wang A., Phan V., Lampinen M., Vicario M., Santos J. et al. Eosinophils express muscarinic receptors and corticotropin-releasing factor to disrupt the mucosal barrier in ulcerative colitis. Gastroenterology. 2011;140(5):1597-1607. DOI: 10.1053/j.gastro.2011.01.042

47. Teitelbaum A.A., Gareau M.G., Jury J., Yang P.C., Perdue M.H. Chronic peripheral administration of corticotropin-releasing factor causes colonic barrier dysfunction similar to psychological stress. Am J Physiol Gastrointest Liver Physiol. 2008;295(3): G452-459. DOI: 10.1152/ajpgi.90210.2008

48. Overman E.L., Rivier J.E., Moeser A.J. CRF Induces Intestinal Epithelial Barrier Injury via the Release of Mast Cell Proteases and TNF-α. PLoS One. 2012;7(6):e39935. DOI: 10.1371/journal.pone.0039935

49. Gebhardt T., Gerhard R., Bedoui S., Erpenbeck V.J., Hoffmann M.W., Manns M.P., Bischoff S.C. β2-Adrenoceptor-mediated suppression of human intestinal mast cell functions is caused by disruption of filamentous actin dynamics. Eur J Immunol. 2005;35(4):1124-1132. DOI: 10.1002/eji.200425869

50. Goldblum S.E., Rai U., Tripathi A., Thakar M., De Leo L., Di Toro N., Not T., Ramachandran R. et al. The active Zot domain (aa 288-293) increases ZO-1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO-1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation. FASEB J. 2011;25(1):144-158. DOI: 10.1096/fj.10-158972

51. Koido S., Ohkusa T., Kan S., Takakura K., Saito K., Komita H., Ito Z., Kobayashi H. et al. Production of corticotropin-releasing factor and urocortin from human monocyte-derived dendritic cells is stimulated by commensal bacteria in intestine. World J Gastroenterol. 2014;20(39):14420-14429. DOI: 10.3748/wjg.v20.i39.14420.

52. Jacob C., Yang P.-C., Darmoul D., Amadesi S., Saito T., Cottrell G.S., Coelho A.-M., Singh P. et al. Mast cell tryptase controls paracellular permeability of the intestine: role of protease-activated receptor 2 and β-arrestins. J Biol Chem. 2005;280(36):31936-31948. DOI: 10.1074/jbc.M506338200

53. Groschwitz K.R., Ahrens R., Osterfeld H., Gurish M.F., Han X., Åbrink M., Finkelman F.D., Pejler G. et al. Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism. Proc Natl Acad Sci. 2009;106(52):22381-22386. DOI: 10.1073/pnas.0906372106

54. Groschwitz K.R., Wu D., Osterfeld H., Ahrens R., Hogan S.P. Chymase-mediated intestinal epithelial permeability is regulated by a protease-activating receptor/matrix metalloproteinase-2-dependent mechanism. Am J Physiol Gastrointest Liver Physiol. 2013;304(5):G479-489. DOI: 10.1152/ajpgi.00186.2012

55. Scudamore C.L., Jepson M.A., Hirst B.H., Hugh R., Miller P. The rat mucosal mast cell chymase, RMCP-11, alters epithelial cell monolayer permeability in association with altered distribution of the tight junction proteins ZO-1 and occludin. Eur J Cell Biol. 1998;75(4):321-330. DOI: 10.1016/s0171-9335(98)80065-4

56.

57. Fu Z., Thorpe M., Hellman L. rMCP-2, the major rat mucosal mast cell protease, an analysis of its extended cleavage specificity and its potential role in regulating intestinal permeability by the cleavage of cell adhesion and junction proteins. PLoS One. 2015;10(6):e0131720. DOI: 10.1371/journal.pone.0131720

58. Ma T.Y., Iwamoto G.K., Hoa N.T., Akotia V., Pedram A., Boivin M.A., Said H.M. TNF-α-induced increase in intestinal epithelial tight junction permeability requires NF-κB activation. Am J Physiol Gastrointest Liver Physiol. 2004;286(3):G367-376. DOI: 10.1152/ajpgi.00173.2003

59. Zolotarevsky Y., Hecht G., Koutsouris A., Gonzalez D.E., Quan C., Tom J., Mrsny R.J., Turner J.R. A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology. 2002;123(1):163-172. DOI: 10.1053/gast.2002.34235

60. Marchiando A.M., Shen L., Graham W.V., Weber C.R., Schwarz B.T., Austin J.R., Raleigh D.R., Guan Y. et al. Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol. 2010;189(1):111-126. DOI: 10.1083/jcb.200902153

61. Traina G. Mast Cells in Gut and Brain and Their Potential Role as an Emerging Therapeutic Target for Neural Diseases. Front Cell Neurosci. 2019;13:345. DOI: 10.3389/fncel.2019.00345

62. Bischoff S.C., Krämer S. Human mast cells, bacteria, and intestinal immunity. Immunol Rev. 2007;217(1):329-337. DOI: 10.1111/j.1600-065X.2007.00523.x

63. Furuta G.T., Nieuwenhuis E.E.S., Karhausen J., Gleich G., Blumberg R.S., Lee J.J., Ackerman S.J. Eosinophils alter colonic epithelial barrier function: role for major basic protein. Am J Physiol Gastrointest Liver Physiol. 2005;289(5):G890-897. DOI: 10.1152/ajpgi.00015.2005

64. Singh G., Brass A., Knight C.G., Cruickshank S.M. Gut eosinophils and their impact on the mucus-resident microbiota. Immunology. 2019;158(3): 194-205. DOI: 10.1111/imm.13110

65. Forbes E., Murase T., Yang M., Matthaei K.I., Lee J.J., Lee N.A., Foster P.S., Hogan S.P. Immunopathogenesis of experimental ulcerative colitis is mediated by eosinophil peroxidase. J Immunol. 2004;172(9): 5664-5675. DOI: 10.4049/jimmunol.172.9.5664

66. Hojo M., Ohkusa T., Tomeoku H., Koido S., Asaoka D., Nagahara A., Watanabe S. Corticotropin-releasing factor secretion from dendritic cells stimulated by commensal bacteria. World J Gastroenterol. 2011;17(35):4017-4022. DOI: 10.3748/wjg.v17.i35.4017

67. Meng L., Lu Z., Xiaoteng W., Yue H., Bin L., Lina M., Zhe C. Corticotropin-releasing Factor Changes the Phenotype and Function of Dendritic Cells in Mouse Mesenteric Lymph Nodes. J Neurogastroenterol Motil. 2015;21(4):571-580. DOI: 10.5056/jnm15019

68. Hu Y., Li M., Lu B., Wang X., Chen C., Zhang M. Corticotropin-releasing factor augments LPS-induced immune/inflammatory responses in JAWSII cells. Immunol Res. 2016;64(2):540-547. DOI: 10.1007/s12026-015-8740-3

69. Hughes P.A., Zola H., Penttila I.A., Blackshaw L.A., Andrews J.M., Krumbiegel D. Immune activation in irritable bowel syndrome: can neuroimmune interactions explain symptoms? Am J Gastroenterol. 2013;108(7):1066-1074. DOI: 10.1038/ajg.2013.120

70. Vanner S.J., Greenwood-Van Meerveld B., Mawe G.M., Shea-Donohue T., Verdu E.F., Wood J., Grundy D. Fundamentals of neurogastroenterology: basic science. Gastroenterology. 2016;150(6): 1280-1291. DOI: 10.1053/j.gastro.2005.11.060

71.

72. Baker C., Richards L.J., Dayan C.M., Jessop D.S. Corticotropin-Releasing Hormone Immunoreactivity in Human T and B Cells and Macrophages: Colocalization With Arginine Vasopressin. J Neuroendocrinol. 2003;15(11):1070-1074. DOI: 10.1046/j.1365-2826.2003.01099.x

73. Saruta M., Takahashi K., Suzuki T., Torii A., Kawakami M., Sasano H. Urocortin 1 in Colonic Mucosa in Patients with Ulcerative Colitis. J Clin Endocrinol Metab. 2004;89(11):5352-5361. DOI: 10.1210/jc.2004-0195

74. Smith E.M., Gregg M., Hashemi F., Schott L., Hughes T.K. Corticotropin Releasing Factor (CRF) Activation of NF-κB-Directed Transcription in Leukocytes. Cell Mol Neurobiol. 2006;26(4):1019-1034. DOI: 10.1007/s10571-006-9040-1

75. Kiank C., Taché Y., Larauche M. Stress-related modulation of inflammation in experimental models of bowel disease and post-infectious irritable bowel syndrome: Role of corticotropin-releasing factor receptors. Brain Behav Immun. 2010;24(1):41-48. DOI: 10.1016/j.bbi.2009.08.006. URL: https://www.sciencedirect.com/science/article/pii/S0889159109003936

76. Chatoo M., Li Y., Ma Z., Coote J., Du J., Chen X. Involvement of corticotropin-releasing factor and receptors in immune cells in irritable bowel syndrome. Front Endocrinol (Lausanne). 2018;9(FEB):21. DOI: 10.3389/fendo.2018.00021

77. Tsatsanis C., Androulidaki A., Dermitzaki E., Gravanis A., Margioris A.N. Corticotropin releasing factor receptor 1 (CRF1) and CRF2 agonists exert an anti-inflammatory effect during the early phase of inflammation suppressing LPS-induced TNF-α release from macrophages via induction of COX-2 and PGE2. J Cell Physiol. 2007;210(3):774-783. DOI: 10.1002/jcp.20900

78. Mawdsley J.E., Macey M.G., Feakins R.M., Langmead L., Rampton D.S. The effect of acute psychologic stress on systemic and rectal mucosal measures of inflammation in ulcerative colitis. Gastroenterology. 2006;131(2):410-419. DOI: 10.1053/j.gastro.2006.05.017

79. Koon H.W., Pothoulakis C. Immunomodulatory properties of substance P: the gastrointestinal system as a model. Ann N Y Acad Sci. 2006;1088(1):23-40. DOI: 10.1196/annals.1366.024

80. Wang L., Stanisz A.M., Wershil B.K., Galli S.J., Perdue M.H. Substance P induces ion secretion in mouse small intestine through effects on enteric nerves and mast cells. Am J Physiol Liver Physiol. 1995;269(1):G85-92. DOI: 10.1152/ajpgi.1995.269.1.G85

81. Zheng P.-Y., Feng B.-S., Oluwole C., Struiksma S., Chen X., Li P., Tang S.-G., Yang P.C. Psychological stress induces eosinophils to produce corticotrophin releasing hormone in the intestine. Gut. 2009;58(11):1473-1479. DOI: 10.1136/gut.2009.181701

82. Asadi S., Alysandratos K.-D., Angelidou A., Miniati A., Sismanopoulos N., Vasiadi M., Zhang B., Kalogeromitros D. et al. Substance P (SP) induces expression of functional corticotropin-releasing hormone receptor-1 (CRHR-1) in human mast cells. J Invest Dermatol. 2012;132(2):324-329. DOI: 10.1038/jid.2011.334

83. Suvas S. Role of Substance P Neuropeptide in Inflammation, Wound Healing, and Tissue Homeostasis. J Immunol. 2017;199(5):1543-1552. DOI: 10.4049/jimmunol.1601751. URL: http://www.jimmunol.org/content/199/5/1543.abstract

84. Xu X.J., Zhang Y.L., Liu L., Pan L., Yao S.K. Increased expression of nerve growth factor correlates with visceral hypersensitivity and impaired gut barrier function in diarrhoea-predominant irritable bowel syndrome: a preliminary explorative study. Aliment Pharmacol Ther. 2017;45(1):100-114. DOI: 10.1111/apt.13848

85.

86. Barreau F., Cartier C., Ferrier L., Fioramonti J., Bueno L. Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats. Gastroenterology. 2004;127(2): 524-534. DOI: 10.1053/j.gastro.2004.05.019. URL: https://www.sciencedirect.com/science/article/pii/S0016508504008650

87. Théodorou V. Susceptibility to stress-induced visceral sensitivity: a bad legacy for next generations. Neurogastroenterol Motil. 2013;25(12):927-930. DOI: 10.1111/nmo.12260

88. Piche T., Barbara G., Aubert P., Des Varannes S.B., Dainese R., Nano J.-L., Cremon C., Stanghellini V. et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut. 2009;58(2):196-201. DOI: 10.1136/gut.2007.140806

89. Xu X., Liu L., Yao S. Nerve growth factor and diarrhea-predominant irritable bowel syndrome (IBS-D): a potential therapeutic target? J Zhejiang Univ B. 2016;17(1):1-9. DOI: 10.1631/jzus.B1500181

90. Gudelsky G.A., Berry S.A., Meltzer H.Y. Neurotensin Activates Tuberoinfundibular Dopamine Neurons and Increases Serum Corticosterone Concentrations in the Rat. Neuroendocrinology. 1989;49(6):604-609. DOI: 10.1159/000125176

91. Rowe W., Viau V., Meaney M.J., Quirion R. Central Administration of Neurotensin Stimulates Hypothalamic-Pituitary-Adrenal Activity. Ann N Y Acad Sci. 1992;668(1):365-367. DOI: 10.1111/j.1749-6632.1992.tb27378.x

92. Ceccatelli S., Cintra A., Hökfelt T., Fuxe K., Wikström A.-C., Gustafsson J.Å. Coexistence of glucocorticoid receptor-like immunoreactivity with neuropeptides in the hypothalamic paraventricular nucleus. Exp Brain Res. 1989;78(1):33-42. DOI: 10.1007/BF00230684

93. Castagliuolo I., Leeman S.E., Bartolak-Suki E., Nikulasson S., Qiu B., Carraway R.E., Pothoulakis C. A neurotensin antagonist, SR 48692, inhibits colonic responses to immobilization stress in rats. Proc Natl Acad Sci U S A. 1996;93(22):12611-12615. DOI: 10.1073/pnas.93.22.12611. URL: https://pubmed.ncbi.nlm.nih.gov/8901630

94. Riegler M., Castagliuolo I., Wang C., Wlk M., Sogukoglu T., Wenzl E., Matthews J.B., Pothoulakis C. Neurotensin stimulates Cl- secretion in human colonic mucosa in vitro: Role of adenosine. Gastroenterology. 2000;119(2):348-357. DOI: 10.1053/gast.2000.9310

95. Hart A., Kamm M.A. Mechanisms of initiation and perpetuation of gut inflammation by stress. Aliment Pharmacol Ther. 2002;16(12):2017-2028. DOI: 10.1046/j.1365-2036.2002.01359.x

96. Thursby E., Juge N.Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823-1836. DOI: 10.1042/BCJ20160510

97. Jandhyala S.M., Talukdar R., Subramanyam C., Vuyyuru H., Sasikala M., Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787-8803. DOI: 10.3748/wjg.v21.i29.8787. URL: https://pubmed.ncbi.nlm.nih.gov/26269668

98. Donia M.S., Fischbach M.A. Human Microbiota. Small molecules from the human microbiota. Science. 2015;349(6246):1254766. DOI: 10.1126/science.1254766

99. Li Z., Quan G., Jiang X., Yang Y., Ding X., Zhang D., Wang X., Hardwidge P.R. et al. Effects of Metabolites Derived From Gut Microbiota and Hosts on Pathogens. Front Cell Infect Microbiol. 2018;8:314. DOI: 10.3389/fcimb.2018.00314. URL: https://www.frontiersin.org/article/10.3389/fcimb.2018.00314

100. Bérdy J. Bioactive Microbial Metabolites. J Antibiot (Tokyo). 2005;58(1):1-26. DOI: 10.1038/ja.2005.1

101. Prochazkova P., Roubalova R., Dvorak J., Tlaskalova-Hogenova H., Cermakova M., Tomasova P., Sediva B., Kuzma M. et al. Microbiota, Microbial Metabolites, and Barrier Function in A Patient with Anorexia Nervosa after Fecal Microbiota Transplantation. Microorganisms. 2019;7(9):338. DOI: 10.3390/microorganisms7090338

102. Alam A., Neish A. Role of gut microbiota in intestinal wound healing and barrier function. Tissue Barriers. 2018;6(3):1539595. DOI: 10.1080/21688370.2018.1539595

103. Bailey M.T., Dowd S.E., Galley J.D., Hufnagle A.R., Allen R.G., Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav Immun. 2011;25(3):397-407. DOI: 10.1016/j.bbi.2010.10.023. URL: https://pubmed.ncbi.nlm.nih.gov/21040780/

104. Collins S.M., Bercik P. Gut microbiota: Intestinal bacteria influence brain activity in healthy humans. Nat Rev Gastroenterol Hepatol. 2013;10(6):326-327. DOI: 10.1038/nrgastro.2013.76. URL: https://www.nature.com/articles/nrgastro.2013.76

105. Galley J.D., Nelson M.C., Yu Z., Dowd S.E., Walter J., Kumar P.S., Lyte M., Bailey M.T. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol. 2014;14:189. DOI: 10.1186/1471-2180-14-189

106. Mukhina A.Yu., Medvedeva O.A,. Svishcheva M.V., Shevchenko A.V., Efremova N.N., Bobyntsev I.I., Kalutskiy P.V. State of experimental animals’ colon microbiocenosis under restraint stress. Astrakhan medical journal. 2019;14(1):54-60 (in Russ.). DOI: 10.17021/2019.14.1.54.60. EDN: WVCDQS

107. Mukhina A.Y., Medvedeva O.A., Svishcheva M.V., Shevchenko A.V., Efremova N.N., Bobyntsev I.I., Kalutskii P V., Andreeva L.A. et al. State of Colon Microbiota in Rats during Chronic Restraint Stress and Selank Treatment. Bull Exp Biol Med. 2019;167(2):226-228. DOI: 10.1007/s10517-019-04496-y. EDN: WGQEYA

108. Svishcheva M.V., Mukhina A.Y., Medvedeva O.A., Shevchenko A.V., Bobyntsev I.I., Kalutskii P.V., Andreeva L.A., Myasoedov N.F.Composition of Colon Microbiota in Rats Treated with ACTH(4-7)-PGP Peptide (Semax) under Conditions of Restraint Stress. Bull Exp Biol Med. 2020;169(3):357-360. DOI: 10.1007/s10517-020-04886-7. EDN: RISSDJ

109. Vorvul A.O., Bobyntsev I.I., Medvedeva O.A., Mukhina A.Y., Svishcheva M.V., Azarova I.E,. Andreeva L.A., Myasoedov N.F. ACTH(6-9)-Pro-Gly-Pro ameliorates anxiety-like and depressive-like behaviour and gut mucosal microbiota composition in rats under conditions of chronic restraint stress. Neuropeptides. 2022;93:102247. DOI: 10.1016/j.npep.2022.102247. URL: https://www.sciencedirect.com/science/article/pii/S0143417922000221. EDN: DESHBK

110. Mukhina A.Yu., Bobyntsev I.I., Medvedeva O.A., Mishina E.S., Svishcheva M.V. Morphological features of the rats’ large intestine with stress-induced dysbiosis. Kursk Scientific and Practical Bulletin “Man and His Health”. 2019;(2):80-86 (in Russ.). DOI: 10.21626/vestnik/2019-2/09. EDN: DDBPJL

111. Mukhina A.Y., Mishina E.S., Bobyntsev I.I., Medvedeva O.A., Svishcheva M.V., Kalutskii P.V., Andreeva L.A., Myasoedov N.F. Morphological Changes in the Large Intestine of Rats Subjected to Chronic Restraint Stress and Treated with Selank. Bull Exp Biol Med. 2020;169(2):281-285. DOI: 10.1007/s10517-020-04868-9. EDN: IQTTBW

112. Svishcheva M.V., Mishina Y.S., Medvedeva O.A., Bobyntsev I.I., Mukhina A.Y., Kalutskii P.V., Andreeva L.A., Myasoedov NF. Morphofunctional State of the Large Intestine in Rats under Conditions of Restraint Stress and Administration of Peptide ACTH(4-7)-PGP (Semax). Bull Exp Biol Med. 2021;170(3):384-388. DOI: 10.1007/s10517-021-05072-z. EDN: FCHNTB

113. O’Mahony S.M., Clarke G., Borre Y.E., Dinan T.G., Cryan J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32-48. DOI: 10.1016/j.bbr.2014.07.027

114. Mawe G.M., Hoffman J.M. Serotonin signalling in the gut--functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2013;10(8):473-486. DOI: 10.1038/nrgastro.2013.105. URL: https://pubmed.ncbi.nlm.nih.gov/23797870

115. Desbonnet L., Garrett L., Clarke G., Bienenstock J., Dinan T.G. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr Res. 2008;43(2):164-174. DOI: 10.1016/j.jpsychires.2008.03.009. URL: https://www.sciencedirect.com/science/article/pii/S0022395608000745

116. El Aidy S., Kunze W., Bienenstock J., Kleerebezem M. The microbiota and the gut-brain axis: insights from the temporal and spatial mucosal alterations during colonisation of the germfree mouse intestine. Benef Microbes. 2012;3(4):251-259. DOI: 10.3920/BM2012.0042

117. Clarke G., Grenham S., Scully P., Fitzgerald P., Moloney R.D., Shanahan F., Dinan T.G,. Cryan J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18(6):666-673. DOI: 10.1038/mp.2012.77

118. Keszthelyi D., Troost F.J., Jonkers D.M., van Eijk H.M., Lindsey P.J., Dekker J., Buurman W.A., Masclee A.A.M. Serotonergic reinforcement of intestinal barrier function is impaired in irritable bowel syndrome. Aliment Pharmacol Ther. 2014;40(4): 392-402. DOI: 10.1111/apt.12842

119. Macfarlane G.T., Macfarlane S. Bacteria, Colonic Fermentation, and Gastrointestinal Health. J AOAC Int. 2012;95(1):50-60. DOI: 10.5740/jaoacint.SGE_Macfarlane

120. Peng L., He Z., Chen W., Holzman I.R., Lin J. Effects of Butyrate on Intestinal Barrier Function in a Caco-2 Cell Monolayer Model of Intestinal Barrier. Pediatr Res. 2007;61(1):37-41. DOI: 10.1203/01.pdr.0000250014.92242.f3

121. Suzuki T., Yoshida S., Hara H. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br J Nutr. 2008;100(2):297-305. DOI: 10.1017/S0007114508888733. URL: https://www.cambridge.org/core/article/physiological-concentrations-of-shortchain-fatty-acids-immediately-suppress-colonic-epithelial-permeability/EBE53D3C9A914AF05A7933FE63D99825

122. Plöger S., Stumpff F., Penner G.B., Schulzke J.-D., Gäbel G., Martens H., Shen Z., Günzel D. et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann N Y Acad Sci. 2012;1258(1):52-59. DOI: 10.1111/j.1749-6632.2012.06553.x

123. Wang H.-B., Wang P.-Y., Wang X., Wan Y.-L., Liu Y. C. Butyrate Enhances Intestinal Epithelial Barrier Function via Up-Regulation of Tight Junction Protein Claudin-1 Transcription. Dig Dis Sci. 2012;57(12):3126-3135. DOI: 0.1007/s10620-012-2259-4

124. Peng L., Li Z.-R., Green R.S., Holzman I.R., Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009 Sep;139(9):1619-1625. DOI: 10.3945/jn.109.104638. URL: https://pubmed.ncbi.nlm.nih.gov/19625695

125. Lewis K., Lutgendorff F., Phan V., Söderholm J.D., Sherman P.M., McKay D.M. Enhanced translocation of bacteria across metabolically stressed epithelia is reduced by butyrate. Inflamm Bowel Dis. 2010;16(7):1138-1148. DOI: 10.1002/ibd.21177

126. Zelante T., Iannitti R.G., Cunha C., De Luca A., Giovannini G., Pieraccini G., Zecchi R., D’Angelo C. et al. Tryptophan Catabolites from Microbiota Engage Aryl Hydrocarbon Receptor and Balance Mucosal Reactivity via Interleukin-22. Immunity. 2013;39(2): 372-385. DOI: 10.1016/j.immuni.2013.08.003. URL: https://www.sciencedirect.com/science/article/pii/S1074761313003312

127. Shimada Y., Kinoshita M., Harada K., Mizutani M., Masahata K., Kayama H., Takeda K.Commensal Bacteria-Dependent Indole Production Enhances Epithelial Barrier Function in the Colon. PLoS One. 2013;8(11):e80604. DOI: 10.1371/journal.pone.0080604

128. Schoeler M., Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019;20(4):461-472. DOI: 10.1007/s11154-019-09512-0

129. Roche H.M., Terres A.M., Black I.B., Gibney M.J., Kelleher D. Fatty acids and epithelial permeability: effect of conjugated linoleic acid in Caco-2 cells. Gut. 2001;48(6):797-802. DOI: 10.1136/gut.48.6.797. URL: http://gut.bmj.com/content/48/6/797.abstract

130. Chen Y., Yang B., Ross R.P., Jin Y., Stanton C., Zhao J., Zhang H., Chen W. Orally administered CLA ameliorates DSS-induced colitis in mice via intestinal barrier improvement, oxidative stress reduction, and inflammatory cytokine and gut microbiota modulation. J Agric Food Chem. 2019;67(48):13282-13298. DOI: 10.1021/acs.jafc.9b05744

131. Ren Q., Yang B., Zhang H., Ross R.P., Stanton C., Chen H., Chen W. c9, t11, c15-CLNA and t9, t11, c15-CLNA from Lactobacillus plantarum ZS2058 ameliorate dextran sodium sulfate-induced colitis in mice. J Agric Food Chem. 2020;68(12):3758-3769. DOI: 10.1021/acs.jafc.0c00573

132. Wiley J.W., Zong Y., Zheng G., Zhu S., Hong S. Histone H3K9 methylation regulates chronic stress and IL-6-induced colon epithelial permeability and visceral pain. Neurogastroenterol Motil. 2020;32(12):e13941. DOI: 10.1111/nmo.13941

133. Rosenfeld J.A., Wang Z., Schones D.E., Zhao K., DeSalle R., Zhang MQ. Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genomics. 2009;10(1):1-11. DOI: 10.1186/1471-2164-10-143

134. Higgins G.A., Hong S., Wiley J.W. The Role of Epigenomic Regulatory Pathways in the Gut-Brain Axis and Visceral Hyperalgesia. Cell Mol Neurobiol. 2022;42(2):361-376. DOI: 10.1007/s10571-021-01108-0

135. De Mey J.R., Freund J.-N. Understanding epithelial homeostasis in the intestine: An old battlefield of ideas, recent breakthroughs and remaining controversies. Tissue barriers. 2013;1(2):e24965-e24965. DOI: 10.4161/tisb.24965. URL: https://pubmed.ncbi.nlm.nih.gov/24665395

136. Imayoshi I., Ishidate F., Kageyama R. Real-time imaging of bHLH transcription factors reveals their dynamic control in the multipotency and fate choice of neural stem cells. Front Cell Neurosci. 2015;9:288. DOI: 10.3389/fncel.2015.00288. URL: https://pubmed.ncbi.nlm.nih.gov/26300726

137. van der Flier L.G., Clevers H. Stem Cells, Self-Renewal, and Differentiation in the Intestinal Epithelium. Annu Rev Physiol. 2009 Feb 12;71(1):241-260. DOI: 10.1146/annurev.physiol.010908.163145

138. Okamoto R., Tsuchiya K., Nemoto Y., Akiyama J., Nakamura T., Kanai T., Watanabe M. Requirement of Notch activation during regeneration of the intestinal epithelia. Am J Physiol Liver Physiol. 2009;296(1):G23-35. DOI: 10.1152/ajpgi.90225.2008

139. Gao F., Zhang Y., Wang S., Liu Y., Zheng L., Yang J., Huang W., Ye Y. et al. Hes1 is involved in the self-renewal and tumourigenicity of stem-like cancer cells in colon cancer. Sci Rep. 2014;4:3963. DOI: 10.1038/srep03963. URL: https://pubmed.ncbi.nlm.nih.gov/24492635

140. Raddatz D., Middel P., Bockemühl M., Benöhr P., Wissmann C., Schwörer H., Ramadori G. Glucocorticoid receptor expression in inflammatory bowel disease: evidence for a mucosal down-regulation in steroid-unresponsive ulcerative colitis. Aliment Pharmacol Ther. 2004;19(1):47-61. DOI: 10.1046/j.1365-2036.2003.01802.x

141. Lemke U., Krones-Herzig A., Diaz M.B., Narvekar P., Ziegler A., Vegiopoulos A., Cato A.C.B., Bohl S. et al. The Glucocorticoid Receptor Controls Hepatic Dyslipidemia through Hes1. Cell Metab. 2008;8(3):212-223. DOI: 10.1016/j.cmet.2008.08.001

142. Revollo J.R., Oakley R.H., Lu N.Z., Kadmiel M., Gandhavadi M., Cidlowski J.A. HES1 is a master regulator of glucocorticoid receptor-dependent gene expression. Sci Signal. 2013;6(304):ra103. DOI: 10.1126/scisignal.2004389

143. Dahan S., Rabinowitz K.M., Martin A.P., Berin M.C., Unkeless J.C., Mayer L. Notch-1 signaling regulates intestinal epithelial barrier function, through interaction with CD4+ T cells, in mice and humans. Gastroenterology. 2011;140(2):550-559. DOI: 10.1053/j.gastro.2010.10.057. URL: https://pubmed.ncbi.nlm.nih.gov/21056041

144. Pope J.L., Bhat A.A., Sharma A., Ahmad R., Krishnan M., Washington M.K., Beauchamp R.D., Singh A.B. et al. Claudin-1 regulates intestinal epithelial homeostasis through the modulation of Notch-signalling. Gut. 2014;63(4):622-634. DOI: 10.1136/gutjnl-2012-304241. URL: https://pubmed.ncbi.nlm.nih.gov/23766441

145. Zheng G., Victor Fon G., Meixner W., Creekmore A., Zong Y., K. Dame M., Colacino J., Dedhia P.H. et al. Chronic stress and intestinal barrier dysfunction: Glucocorticoid receptor and transcription repressor HES1 regulate tight junction protein Claudin-1 promoter. Sci Rep. 2017;7(1):4502. DOI: 10.1038/s41598-017-04755-w

146. St Johnston D., Sanson B. Epithelial polarity and morphogenesis. Curr Opin Cell Biol. 2011;23(5): 540-546. DOI: 10.1016/j.ceb.2011.07.005. URL: https://www.sciencedirect.com/science/article/pii/S0955067411000883

147. Wodarz A., Näthke I. Cell polarity in development and cancer. Nat Cell Biol. 2007;9(9):1016-1024. DOI: 10.1038/ncb433

148. St Johnston D., Ahringer J. Cell Polarity in Eggs and Epithelia: Parallels and Diversity. Cell. 2010;141(5):757-774. DOI: 10.1016/j.cell.2010.05.011. URL: https://www.sciencedirect.com/science/article/pii/S0092867410005477

149. Zhang L., Li J., Young L.H., Caplan M.J. AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proc Natl Acad Sci U S A. 2006;103(46):17272-17277. DOI: 10.1073/pnas.0608531103. URL: https://pubmed.ncbi.nlm.nih.gov/17088526

150. Zheng B., Cantley L.C. Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase. Proc Natl Acad Sci U S A. 2007;104(3):819-822. DOI: 10.1073/pnas.0610157104. URL: https://pubmed.ncbi.nlm.nih.gov/17204563

151. Lee J.H., Koh H., Kim M., Kim Y., Lee S.Y., Karess R.E., Lee S.-H., Shong M. et al. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature. 2007;447(7147):1017-1020. DOI: 10.1038/nature05828

152. Hardie D.G. AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr. 2014;34:31-55. DOI: 10.1146/annurev-nutr-071812-161148. URL: https://pubmed.ncbi.nlm.nih.gov/24850385

153. Cao S., Wang C., Yan J., Li X., Wen J., Hu C. Curcumin ameliorates oxidative stress-induced intestinal barrier injury and mitochondrial damage by promoting Parkin dependent mitophagy through AMPK-TFEB signal pathway. Free Radic Biol Med. 2020;147:8-22. DOI: 10.1016/j.freeradbiomed.2019.12.004. URL: https://www.sciencedirect.com/science/article/pii/S0891584919314881

154. Wongkrasant P., Pongkorpsakol P., Ariyadamrongkwan J., Meesomboon R., Satitsri S., Pichyangkura R., Barrett K.E., Muanprasat C. A prebiotic fructo-oligosaccharide promotes tight junction assembly in intestinal epithelial cells via an AMPK-dependent pathway. Biomed Pharmacother. 2020;129:110415. DOI: 10.1016/j.biopha.2020.110415. URL: https://www.sciencedirect.com/science/article/pii/S0753332220306089

155. Olivier S., Leclerc J., Grenier A., Foretz M., Tamburini J., Viollet B. AMPK Activation Promotes Tight Junction Assembly in Intestinal Epithelial Caco-2 Cells.Int J Mol Sci. 2019;20(20):5171. DOI: 10.3390/ijms20205171. URL: https://pubmed.ncbi.nlm.nih.gov/31635305

156. Ducommun S., Deak M., Sumpton D., Ford R.J., Núñez Galindo A., Kussmann M., Viollet B., Steinberg G.R. et al. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: Identification of mitochondrial fission factor as a new AMPK substrate. Cell Signal. 2015;27(5):978-988. DOI: 10.1016/j.cellsig.2015.02.008. URL: https://www.sciencedirect.com/science/article/pii/S089865681500042X

157. Ghosh P., Swanson L., Sayed I.M., Mittal Y., Lim B.B., Ibeawuchi S.-R., Foretz M., Viollet B. et al. The stress polarity signaling (SPS) pathway serves as a marker and a target in the leaky gut barrier: implications in aging and cancer. Life Sci alliance. 2020;3(3):e201900481. DOI: 10.26508/lsa.201900481. URL: https://pubmed.ncbi.nlm.nih.gov/32041849

158. Zhu M.-J., Sun X., Du M. AMPK in regulation of apical junctions and barrier function of intestinal epithelium. Tissue barriers. 2018;6(2):1-13. DOI: 10.1080/21688370.2018.1487249. URL: https://pubmed.ncbi.nlm.nih.gov/30130441

159. Yano T., Matsui T., Tamura A., Uji M., Tsukita S. The association of microtubules with tight junctions is promoted by cingulin phosphorylation by AMPK. J Cell Biol. 2013;203(4):605-614. DOI: 10.1083/jcb.201304194. URL: https://pubmed.ncbi.nlm.nih.gov/24385485

160. Aznar N., Patel A., Rohena C.C., Dunkel Y., Joosen L.P., Taupin V., Kufareva I., Farquhar M.G. et al. AMP-activated protein kinase fortifies epithelial tight junctions during energetic stress via its effector GIV/Girdin. Elife. 2016 Nov;5:e20795.

161. Foster J.A., Neufeld K.-A.M. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305-312. DOI: 10.1016/j.tins.2013.01.005

162. Allen J.M., Mackos A.R., Jaggers R.M., Brewster P.C., Webb M., Lin C.-H., Ladaika C., Davies R. et al. Psychological stress disrupts intestinal epithelial cell function and mucosal integrity through microbe and host-directed processes. Gut Microbes. 2022;14(1):2035661. DOI: 10.1080/19490976.2022.2035661

163. Wang Y. Current progress of research on intestinal bacterial translocation. Microb Pathog. 2021;152:104652. DOI: 10.1016/j.micpath.2020.104652. URL: https://www.sciencedirect.com/science/article/pii/S0882401020310184

164. Ait-Belgnaoui A., Durand H., Cartier C., Chaumaz G., Eutamene H., Ferrier L., Houdeau E., Fioramonti J. et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012;37(11):1885-1895. DOI: 10.1016/j.psyneuen.2012.03.024

165. Galley J.D., Bailey M.T. Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes. 2014;5(3):390-396. DOI: 10.4161/gmic.28683

166. Maslanik T., Tannura K., Mahaffey L., Loughridge A.B., Benninson L., Ursell L., Greenwood B.N., Knight R. et al.Commensal bacteria and MAMPs are necessary for stress-induced increases in IL-1β and IL-18 but not IL-6, IL-10 or MCP-1. PLoS One. 2012;7(12):e50636. DOI: 10.1371/journal.pone.0050636

167. Dlugosz A., Nowak P., D’Amato M., Mohammadian Kermani G., Nyström J., Abdurahman S., Lindberg G. Increased serum levels of lipopolysaccharide and antiflagellin antibodies in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil. 2015;27(12):1747-1754. DOI: 10.1111/nmo.12670

168. Maes M., Kubera M., Leunis J.-C., Berk M. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord. 2012;141(1):55-62. DOI: 10.1016/j.jad.2012.02.023

169. Zhu H.Z., Liang Y.D., Hao W.Z., Ma Q.Y., Li X.J., Li Y.M., Chen J.X. Xiaoyaosan Exerts Therapeutic Effects on the Colon of Chronic Restraint Stress Model Rats via the Regulation of Immunoinflammatory Activation Induced by the TLR4/NLRP3 Inflammasome Signaling Pathway. Evid Based Complement Alternat Med. 2021;2021:6673538. DOI: 10.1155/2021/6673538

170. Cox S.S., Speaker K.J., Beninson L.A., Craig W.C., Paton M.M., Fleshner M. Adrenergic and glucocorticoid modulation of the sterile inflammatory response. Brain Behav Immun. 2014;36:183-192. DOI: 10.1016/j.bbi.2013.11.018

171. Fleshner M. The gut microbiota: a new player in the innate immune stress response? Brain Behav Immun. 2011;25(3):395-396. DOI: 10.1016/j.bbi.2010.12.007

172. Pan Y., Chen X.Y., Zhang Q.Y., Kong LD. Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun. 2014;41(1):90-100. DOI: 10.1016/j.bbi.2014.04.007

173. Zhang Y., Liu L., Peng Y.-L., Liu Y.-Z., Wu T.-Y., Shen X.-L., Zhou J.-R., Sun D.-Y. et al. Involvement of Inflammasome Activation in Lipopolysaccharide-induced Mice Depressive-like Behaviors. CNS Neurosci Ther. 2014;20(2):119-124. DOI: 10.1111/cns.12170

174. Kelley N., Jeltema D., Duan Y., He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation.Int J Mol Sci. 2019;20(13):3328. DOI: 10.3390/ijms20133328. URL: https://pubmed.ncbi.nlm.nih.gov/31284572

175. Li C.-C., Gan L., Tan Y., Yan M.-Z., Liu X.-M., Chang Q., Pan R.-L. Chronic restraint stress induced changes in colonic homeostasis-related indexes and tryptophan-kynurenine metabolism in rats. J Proteomics. 2021;240:104190. DOI: 10.1016/j.jprot.2021.104190

176. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461. DOI: 10.3389/fimmu.2014.00461

177. Nozu T., Miyagishi S., Nozu R., Takakusaki K., Okumura T. Lipopolysaccharide induces visceral hypersensitivity: role of interleukin-1, interleukin-6, and peripheral corticotropin-releasing factor in rats. J Gastroenterol. 2016;52:72-80. DOI: 10.1007/s00535-016-1208-y

178. Yuan P.Q., Wu S.V., Wang L., Taché Y. Corticotropin releasing factor in the rat colon: expression, localization and upregulation by endotoxin. Peptides. 2010;31(2):322-331. DOI: 10.1016/j.peptides.2009.11.012


Review

For citations:


Vorvul A.O., Bobyntsev I.I., Medvedeva O.A. On mechanisms of increased intestinal wall permeability under stress. Humans and their health. 2022;25(2):43-63. (In Russ.) https://doi.org/10.21626/vestnik/2022-2/05

Views: 624


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5746 (Print)
ISSN 1998-5754 (Online)